

C Programming
The ultimate way to learn the

fundamentals of the C language.

-Harry H. Chaudhary.
(IT Manager @ Anonymous International)

Author Note:

Every possible effort has been made to ensure that the information contained in

this book is accurate, and the publisher or the Author can’t accept responsibility for any
errors or omissions, however caused.

All liability for loss, disappointment, negligence or other damage caused by the
reliance of the Technical Programming or other information contained in this book, of in
the event of bankruptcy or liquidation or cessation of trade of any company, individual;
or firm mentioned, is hereby excluded.

All other marks are property of their respective owners. The examples of

companies, organizations, products, domain names, email addresses, logos, people,
places, and events depicted herein are fictitious. No association with any real company,
organization, product, domain name, email address, logo, person, place, or event is
intended or should be inferred.

The author and publisher have taken care in the preparation of this book, but make

no expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in
connection with or arising out of the use of the information or programs contained
herein.

This book expresses the author views and opinions. The information contained in

this book is provided without any express, statutory, or implied warranties. Neither the
authors, and Publisher, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Copyright © 2014 By Hariom Chaudhary. (Harry)
Published By First MIT- Createspace Inc. O-D-Publishing, LLC USA.

All rights reserved. This book or any portion thereof may not be reproduced or used in
any manner whatsoever without the express written permission of the author Harry
(Hariom Chaudhary) except for the use of brief quotations in a book review or scholarly
journal.

ISBN 13: 978-1500481117.
ISBN-10: 1500481114.

Marketing & Distribution By Amazon Inc. & Other 1500 worldwide Bookstores.
Print Paperback Edition Available on Amazon.com and Digital PDF Edition Available on Google Books and
Google Play and Lulu.com with Discount.

For Publish this book in other language or request permission or license of this
book work contact Author’s Assistance- Author.Harry@Gmail.com

Dedication

“This book is most dedicated to all those who make the daily sacrifices,

Especially those who have made the ultimate sacrifice, to ensure our
freedom & security.”

You told me that everything will be okay in the end,
You also told me that, if it’s not okay, it’s not the end.

“I’ll search for you through 1000 worlds & 10000 lifetimes until I find you”

About Author:

Harry, H. Chaudhary is an Indian computer Programming and Bestselling Java

Author and scientifically Hacking professional has a unique experience in the field of
computers Programming, Hacking and Cyber Security.

He has helped many Countries Governments and many multinational Software

companies of around the globe to secure their networks and securities. He has authored
several books on Various Computers Programming Languages and computer security &
Hacking. He is basically known for his international bestselling Programming book
“Core Java Professional.”

He is technically graduate software engineer and Master. He is the leading

authority on C Programming and C++ Programming as well as on Core Java and Data
Structure and Algorithms. His acclaimed C and C++, C# & Java books. He has over 5
years of experience as a software methodologist. His teaching and research interests are
in the areas of artificial intelligence, programming languages.

He is living two lives. One life, He is a Computer program writer for a

respectable software company. The other life is lived in computers, where he go by the
hacker alias 'Harry" and are guilty of virtually every computer crime. Currently he is
working as offline IT manager @ world famous community Anonymous international
Community.

Author side:
You may have noticed something missing here: no impressive of credentials. I

haven't been a professor at a Prestigious University for a quarter-century; neither am I a
top executive at a Silicon Valley giant. In some ways, I'm a student of Technology, just
like you are.

And my experience over the years has shown me that many of the people who
know the most about how technology works also have rather limited success in
explaining what they know in a way that will allow me to understand it. My interests,
and I believe my skills, lie not in being an expert, but an educator, in presenting
complex information in a form that is sensible, digestible and fun to read my books.
"What is real? How do you define real? If you're talking about what you can feel, what
you can smell, what you can taste and see, then real is simply, electrical signals
interpreted by your brain."

‘‘... I am just now beginning to discover the difficulty of expressing one’s ideas on

paper. As long as it consists solely of description it is pretty easy; but where reasoning
comes into play, to make a proper connection, a clearness & a moderate fluency, is to
me, as I have said, a difficulty of which I had no idea ...’’ – Harry

∞ Inside Topics at a Glance ∞

S.No. Chapters Page
1. Preface – Page-6, || Introduction to C. 07
2. Elements of C Programming Language. 33
3. Control statements (conditions). 62
4. Control statements (Looping). 75
5. One dimensional Array. 107
6. Multi-Dimensional Array. 125
7. String (Character Array). 131
8. Your Brain on Functions. 141
9. Your Brain on Pointers. 173
10. Structure, Union, Enum, Bit Fields, Typedef. 197
11. Console Input and Output. 219
12. File Handling In C. 227
13. Miscellaneous Topics. 237
14. Storage Class. 247
15. Algorithms. 253
16. Unsolved Practical Problems. 257
17. PART-II-120+ Practical Code Chapter-Wise. 271
18. Creating & Inserting own functions in Liberary. 341
19. Graphics Programming In C. 345
20. Operating System Development –Intro. 349
21. C Programming Guidelines. 356
22. Common C Programming Errors. 367
23. Live Software Development Using C. 383-395

Preface:

∞ Essential C Programming Skills--Made Easy! ∞
Learn the all basics and advanced features of C programming in no time from
Bestselling Programming Author Harry. H. Chaudhary. This Book, starts with the
basics; I promise this book will make you 100% expert level champion of C
Programming.

Anyone can learn C Programming through this book at expert level.
Engineering Students and fresh developers can also use this book. In software
development section I explained live software project. As we all knows Author Harry
is basically known for his “Easy Techniques-Explanations in Programming World -
Learn with Fun Style !” To use this book does not require any previous
programming experience.

This book covers common core syllabus for BCA, MCA, B.TECH, M.TECH, BS
(CS), MS (CS), BSC-IT (CS), MSC-IT (CS), and Computer Science Professionals as
well as for Hackers. This book contains 1000+ Live C Program’s code examples, and
500+ Lab Exercise & 200+ Brain Wash Topic-wise Code book and 20+ Live software
Development Project’s. All what you need ! Isn’t it ?

This Book is very serious C Programming stuff: A complete introduction to C
Language. You'll learn everything from the fundamentals to advanced topics. If you've
read this book, you know what to expect a visually rich format designed for the way
your brain works. If you haven't, you're in for a treat. You'll see why people say it's
unlike any other C book you've ever read.

Learning a new language is no easy. You might think the problem is your brain. It
seems to have a mind of its own, a mind that doesn't always want to take in the dry,
technical stuff you're forced to study.

The fact is your brain craves novelty. It's constantly searching, scanning, waiting for
something unusual to happen. After all, that's the way it was built to help you stay alive.
It takes all the routine, ordinary, dull stuff and filters it to the background so it won't
interfere with your brain's real work--recording things that matter. How does your brain

know what matters?

CHAPTER
∞ 1 ∞

(Introduction To C)

Introduction-

Stuff you need to know about language levels –

Programming languages have different levels, depending on how much they
resemble human Languages. Programming languages that use common words and are
relatively easy for most folks to read and study are called high level languages. The
opposite of those are low-level languages, which are not easy to read or study.

High-level languages include the popular BASIC programming language as

well as other languages that just aren’t that popular any more BASIC reads almost like
English, and all its commands and instructions are English words — or at least English
words missing a few vowels or severely disobeying the laws of spelling.

The lowest of the low-level programming languages is machine language. That

language is the actual primitive grunts and groans of the microprocessor itself. Machine
language consists of numbers and codes that the microprocessor understands and
executes.

Therefore, no one really writes programs in machine language; rather, they use

assembly language, which is one step above the low-level machine language because

the grunts and groans are spelled out rather than entered as raw numbers.

Why would anyone use a low-level language when high-level languages exist?
Speed! Programs written in low-level languages run as fast as the computer can run
them, often many times faster than their high-level counterparts. Plus, the size of the
program is smaller.

A program written in Visual Basic may be 34K in size, but the same program
written in assembly language may be 896 bytes long. On the other hand, the time it takes
to develop an assembly language program is much longer than it would take to write the
same program in a higher-level language. It’s a trade-off.

The C programming language is considered a mid-level language. It has parts
that are low-level grunting and squawking, and also many high-level parts that read like
any sentence in a Michael Crichton novel, but with more character development.

In C, you get the best of the high-level programming languages and the speed of

development they offer and you also get the compact program size and speed of a low-
level language. That’s why C is so bitchen.

Note: No, I’m not being flip. C was developed at AT&T Bell Labs in the early 1970-
72s. At the time, Bell Labs had a programming language named B --B for Bell. The next
language they created was C - one up on B.

C is the offspring of both the B programming language and a language named
BCPL, which stood for Basic Combined Programming Language. But you have
to admit that the B story is cute enough by itself.

You would think that the next, better version of C would be called the D
language. But, no; it’s named C++.

C is considered a mid-level language. See the nearby sidebar, “Stuff you don’t
need to know about language levels,” for the boring details.

The guy who created the C programming language at Bell Labs is Dennis
Ritchie. I mention him in case you’re ever walking on the street and you happen
to bump into Mr. Ritchie. In that case, you can say “Hey, aren’t you Dennis
Ritchie, the guy who invented C?” And he’ll say “Why — why, yes I am.” And
you can say “Cool.”

History of C -

C programming language is perhaps the most popular programming language. C
was created in 1972 by Dennis Ritchie at the Bell Labs in USA as a part of UNIX
operating system. C was also used to develop some parts of this operating system. In
1960’s “Basic Combined Programming Language (BCPL) called B language was
developed at Cambridge university.

It was not fully satisfied language. ‘B’ language was modified by denies

Ritchie was implemented at bell laboratory in 1972. C is generally supported by most
compilers. C was developed by a system programmer Dennis Ritchie in 1972, at
American Telegraph & Telecommunication (AT & T) Bell Laboratories in New Jersey
USA.

From that time C programming language has been the de facto programming
language when fast programs are needed or the software needs to interact with the
hardware in some way.

Most of the operating systems like Linux, Windows™, and Mac™ are either

developed in C language or use of this language for most parts of the operating system
and the tools coming with it.

This course is a quick course on C Programming language. In our first lesson we

will first write our first C program. We will then learn about printing to screen,
variables and functions. We assume that you are familiar with at least one of the popular
operating systems.

For this course you can use the following compilers or Programming Environments.
--

Gcc and cc in UNIX and Linux operating systems.

Borland C or Turbo C in DOS operating system or in Command line
environment of windows operating system.

“Bloodshed Dev-Cpp” integrated development environment (IDE) gives you a
complete and compact programming environment.

It comes with “MinGW” and “GCC” C Compilers and you should not need
anything else for this course.

The C Development Cycle -

Here is how you create a C program in seven steps in what’s known as the development
cycle:

1. Come up with an idea for a program.
2. Use an editor to write the source code.
3. Compile the source code and link the program by using the C compiler.
4. Weep bitterly over errors (optional).
5. Run the program and test it.
6. Pull out hair over bugs (optional).
7. Start over (required).

No need to memorize this list. It’s like the instructions on a shampoo bottle,
though you don’t have to be naked and wet to program a computer. Eventually, just like
shampooing, you start following these steps without thinking about it. No need to
memorize anything. The C development cycle is not an exercise device. In fact,
programming does more to make your butt fit more snugly into your chair than anything.

Step 1 is the hardest. The rest fall naturally into place.

Step 3 consists of two steps: compiling and linking. For most of this book, however,
they are done together, in one step. Only later if you’re still interested do I go into the
specific differences of a compiler and a linker.

From Text File to Program:

When you create a program, you become a programmer. Your friends or

relatives may refer to you as a “computer wizard” or “guru,” but trust me when I say
that programmer is a far better title.

As a programmer, you job is not “programming.” No, the act of writing a

program is coding. So what you do when you sit down to write that program is code the
program. Get used to that term! It’s very trendy.

The job of the programmer is to write some code! Code to do what? And what

type of code do you use? Secret code? Morse Code? Zip code?

The purpose of a computer program is to make the computer do something.

The object of programming is to “make it happen.” The C language is only a

tool for communicating with the PC.

As the programmer, it’s your job to translate the intentions of the computer user into
something the computer understands and then give users what they want. And if you
can’t give them what they want, at least make it close enough so that they don’t
constantly complain or — worse — want their money back.

The tool you have chosen to make it happen is the C programming language. That’s
the code you use to communicate with the PC. The following sections describe how the
process works. After all, you can just pick up the mouse and say “Hello, computer!”

Programming is what TV network executives do. Computer programmers Code.

You use a programming language to communicate with the computer, telling it
exactly what to do.

The source code - (Text file)

Because the computer can’t understand speech and, well, whacking the
computer — no matter how emotionally validating that is for you does little to the PC,
your best line of communications is to write the computer a note a file on disk.

To create a PC epistle, you use a program called a text editor. This program is a
primitive version of a word processor minus all the fancy formatting and printing
controls. The text editor lets you type text — that’s about all.

Using your text editor, you create what’s called a source code file. The only special
thing about this file is that it contains instructions that tell the computer what to do.

And although it would be nice to write instructions like “Make a funny noise,” the

truth is that you must write instructions in a tongue the computer understands. In this
case, the instructions are written in the C language.

The source code file is a text file on disk. The file contains instructions for the
computer that are written in the C programming language.

You use a text editor to create the source code file. See Appendix A for more
information on text editors.

Creating the Goodbye Harry.C source code file:

Use your text editor to create the following source code. Carefully type each
line exactly as written; everything you see below is important and necessary. Don’t
leave anything out--

#include <stdio.h>
int main()
{
printf(“Goodbye Harry, cruel world!\n”);
return(0);
}

As you review what you have typed, note how much of it is familiar to you. You
recognize some words (include, main, “GoodbyeHarry, cruel world!”, and return), and
some words look strange to you (stdio.h, printf, and that \n thing).

When you have finished writing the instructions, save them in a file on disk.
Name the file GOODBYEHARRY.C. Use the commands in your text editor to save this
file, and then return to the command prompt to compile your instructions into a program.

Stuff you need to remember -

In Windows Notepad, you must ensure that the file ends in .C and not in .TXT.
Find a book about Windows for instructions on showing the file name
extensions, which makes saving a text file to disk with a .C extension easier.

Note that the text is mostly in lowercase. It must be; programming languages are
more than case sensitive — they’re case-fussy. Don’t worry when English
grammar or punctuation rules go wacky; C is a computer language, not English.

Also note how the program makes use of various parentheses: the angle
brackets, < and >; the curly braces, { and }; and the regular parentheses, (and
).

Save It! Compile and Link It! Run It!

Four steps are required in order to build any program in C. They are save,

compile, link, and run. Most C programming language packages automatically perform
the linking step,

Though whether or not it’s done manually, it’s still in there. Save! Saving
means to save your source code. You create that source code in a text editor and save it
as a text file with the C (single letter C) extension.

Compile and link! Compiling is the process of transforming the instructions in
the text file into instructions the computer’s microprocessor can understand. The linking
step is where the instructions are finally transformed into a program file. (Again, your
compiler may do this step automatically.)

Run! Finally, you run the program you have created. Yes, it’s a legitimate
program, like any other on your hard drive. You have completed all these steps in this
chapter, culminating in the creation of the GOODBYEHARRY program. That’s how C
programs are built.

At this stage, the hardest part is to knowing what to put in the source file,

which gets easier as you progress through this book. (But by then, getting your program
to run correctly and without errors is the hardest part!)

You find the instructions to save, compile, and run often in this book. That’s

because these steps are more or less mechanical. What’s more important understands
how the language works. That’s what you start to find out about in the next chapter.

History of C Language -

As I mentioned earlier that C was developed by a system programmer Dennis
Ritchie in 1970-72, at American Telegraph & Telecommunication (AT & T) Bell
Laboratories in New Jersey USA. It was written originally for programming under
UNIX operating system.

C was developed from BCPL (Basic Combined Programming Language-B)

which was improved and renamed as B. B was developed in 1960’s at Cambridge
University.

C is actually a symbolic instruction code, a set of commands that perform

actions on a computer. The C language is often referred as middle level language

because we can write high as well as low level programs through C.

Languages prior to C are FORTRAN (Formula Translation), COBOL

(Common Business Oriented Language), BASIC (Beginners All Purpose Symbolic
Instruction Code) and Pascal. Languages after C are C++, Java, C# etc. C permits very
close interaction with the inner working of the computer.
What is C?

C is a programming language used to write a program. Programs are the set of
instructions given by a programmer to the computer in high level language. C uses a
compiler to translate the high level program into machine code before executing any
instructions. Compiler is itself a computer program. Other translators are Interpreter and
Assembler.

The original high level program is called the source program(.C) and the

resulting machine language program is called the object program(.obj). 'It was named
"C" because its features were derived from an earlier language called "B", which
according to Ken Thompson was a stripped-down version of the BCPL
programming language '

Assembler vs. Compiler -

In general, compiler is a computer program that reads a program written in one
language, which is called the source language, and translates it in to another language,
which is called the target language. Traditionally, source language was a high level
language such as C++ and target language was a low level language such as Assembly
language.

However, there are compilers that can convert a source program written in

Assembly language and convert it to machine code or object code. Assemblers are such
tools. So, both assemblers and compilers ultimately produce code that can be directly
executed on a machine.

What is a Compiler?

Compiler is a computer program that reads a program written in one language,
which is called the source language, and translates it in to another language, which is
called the target language. Most often, the source language is a high level language and
the target language is a low level language. So, in general compilers can be seen as
translators that translate from one language to another. In addition, compilers perform

some optimizations to the code.

A typical compiler is made up of several main components. The first

component is the scanner (also known as the lexical analyzer). Scanner reads the
program and converts it to a string of tokens.

The second component is the parser. It converts the string of tokens in to a

parse tree (or an abstract syntax tree), which captures the syntactic structure of the
program. Next component is the semantic routines that interpret the semantics of the
syntactic structure. The code optimizations and final code generation follow this.
What is an Assembler?

Assembler is a software or a tool that translates Assembly language to machine
code. So, an assembler is a type of a compiler and the source code is written in
Assembly language.

Assembly is a human readable language but it typically has a one to one

relationship with the corresponding machine code. Therefore an assembler is said to
perform isomorphic (one to one mapping) translation. Advanced assemblers provide
additional features that support program development and debugging processes. For
example, the type of assemblers called macro assemblers provides a macro facility.

What is the difference between an Assembler and a Compiler?

Compiler is a computer program that reads a program written in one language
and translates it in to another language, while an assembler can be considered a special
type of compiler which translates only Assembly language to machine code. Compilers
usually produce the machine executable code directly from a high level language,

But assemblers produce an object code which might have to be linked using
linker programs in order to run on a machine. Because Assembly language has a one to
one mapping with machine code, an assembler may be used for producing code that runs
very efficiently for occasions in which performance is very important (for e.g. graphics
engines, embedded systems with limited hardware resources compared to a personal
computer like microwaves, washing machines, etc.).

Difference between:

 Assembler Compiler

1. It translates the mnemonic codes such
as PRN, ADD, and SUB etc. to
machine language code.

It translates the high level language to
assembly language.

2. The program, which executes using
assembler, executes faster, because it
directly converts the source code in
machine language.

It takes time to execute a program,
because it first translates the source
code into another compiler’s language
and then using assembler converts it
into machine language.

Difference between: Compiler and Interpreter -

A interpreter is similar to sentence-by-sentence translation, whereas a
compiler is similar to translation to the whole passage.

 Compiler Interpreter
1. Compiler translates the entire high

level language program into the
machine language program at once
before executing it. This optimizes
the use of machine language
instructions in the translated
program. Therefore normally
compiled programs run faster than
Interpreted programs. The original
high level language program is called
a s source program . The compiled
program i.e. machine language
program generated by the compiler
after translation is called object
program.

The Interpreter translates the program
written in high level language into
machine language at the time of executing
that program, instructions by instructions.
That is, it reads the first instruction
written in the program and converts that
into equivalent machine language
instructions. Then the CPU watches those
machine language instructions. After that,
the Interpreter reads and translates the
next instruction and so on.

2. Compiler Takes Entire program as input Interpreter Takes Single instruction as
input.

3. Object code is permanently saved for
future use.

No object code is saved for future use.

4. Non time consuming translation
method.

Time consuming translation method

5. It requires large space in the Interpreter are easy to write and do not

computer. require large memory space.
6. Speed of a compiler is very fast. Speed is very slow.
7. Any change in source program after

the compilation requires recompiling
of entire code.

Any change in source program during the
translation does not require’s
retranslation of entire code.

8. Intermediate Object Code is
Generated.

No Intermediate Object Code is
Generated.

9. Conditional Control Statements are
Executes faster.

Conditional Control Statements are
Executes slower.

10. Memory Requirement : More
(Since Object Code is Generated)

Memory Requirement is Less.

11. Program need not be compiled every
time.

Every time higher level program is
converted into lower level program.

12. Errors are displayed after entire
program is checked.

Errors are displayed for every
instruction interpreted (if any)

13. Example : C Compiler. Example : BASIC.

Explanation: Compiler Vs Interpreter
Just understand the concept of the compiler and interpreter -

1. We give complete program as input to the compiler. Our program is in the
human readable format.
2. Human readable format undergoes many passes and phases of compiler and
finally it is converted into the machine readable format.

3. However interpreter takes single line of code as input at a time and
executes that line. It will terminate the execution of the code as soon as it finds the
error.
4. Memory requirement is less in Case of interpreter because no object code
is created in case of interpreter.

Drill Note – Most of students really don’t know the difference between Compiler &
Interpreter. Learning a new language is no easy. You might think the problem is your
brain. That’s why I am trying to explain differences in many forms.

A Compiler and Interpreter both carry out the same purpose – convert a high
level language (like C, Java) instructions into the binary form which is understandable
by computer hardware.

They are the software used to execute the high level programs and codes to
perform various tasks. Specific compilers/interpreters are designed for different high
level languages.
However both compiler and interpreter have the same objective but they differ in the
way they accomplish their task i.e. convert high level language into machine language.
Look seriously below-

Compiler –

A compiler is a piece of code that translates the high level language into
machine language. When a user writes a code in a high level language such as Java and
wants it to execute, a specific compiler which is designed for Java is used before it will
be executed. The compiler scans the entire program first and then translates it into
machine code which will be executed by the computer processor and the corresponding
tasks will be performed.

http://www.c4learn.com/c-programming/what-is-compiler/
http://www.c4learn.com/c-programming/what-is-interpreter/
http://www.engineersgarage.com/articles/what-is-compiler-tutorial

Shown in the figure is basic outline of the compilation process, here program written in
higher level language is known as source program and the converted one is called
object program.

Interpreter -

Interpreters are not much different than compilers. They also convert the high
level language into machine readable binary equivalents. Each time when an interpreter
gets a high level language code to be executed, it converts the code into an intermediate
code before converting it into the machine code. Each part of the code is interpreted and
then execute separately in a sequence and an error is found in a part of the code it will
stop the interpretation of the code without translating the next set of the codes.

Merits of C Programming -

1. C is a general purpose programming language. You can generate games, business
software, utilities, mathematical models, word processors, spreadsheets and other kinds
of software.

2. C is a structured programming language. It uses structured statements such as while,
for loops in place of goto statements which cause bugs (error) in the program.

3. System independence- C does not require any services from the operating system, it
runs independently. C can run on any operating system.

4. High efficiency- C compilers are generally able to translate source code into
efficient machine instructions. C language data and control mechanisms are well
matched to most small computers and microcomputers.

5. System programming- C is used for system programming i.e. writing operating

systems. The UNIX operating system is also rewritten from C.

Difference between Syntax and Semantics -

Semantics Syntax
It is the logic or planning of the
program. Semantics can be written in
any of the following ways:

1. Flowcharts.
2. Algorithms.
3. Pseudo codes.

It is the way of writing the program in
a particular programming language.
Syntax changes from language to
language.

FLOWCHART -

It is a symbolic representation of the program logic. There are some
predefined symbols used for the logic. A flowchart shows the actual flow of the logic of
a program.

A flowchart is nothing but diagrammatic representation of various steps

involved in solution of a problem. The flowchart indicates the direction of flow of a
process, relevant operations and computations, point of decisions and other information
which are a part of the solution. Once developed and properly checked, the flowchart
provides an excellent guide for writing the program.

ALGORITHMS -

Once a problem is been properly defined, a detailed, finite, step-by-step
procedure for solving it must be developed. This procedure is known as algorithm.
Algorithm can be written in ordinary language, or using formal procedures that lie
somewhere between ordinary and programming languages.

Algorithm to add two numbers –

1. Read A,B.
2. Set SUM := A+B.
3. Write SUM.
4. Exit.

PSEUDOCODE -

Sometimes, it is desirable to translate an algorithm to an intermediate form,
between that of a flowchart and the source code. Pseudocode is an English
approximation of source code that follows the rules, style, and format of a language but
ignores most punctuation’s.
main()
{

 integer a,b,sum;
 read in a and b;
 add a & b and set it to sum;
 write sum;
}

Structure of C program (Source Code) -

Let us discuss the structure of a C program using an example:
/*sum of two numbers*/

#include<stdio.h> /* For printf() & scanf() */
#include<conio.h> /* For clrscr() & getch() */
main() /* Starting point of the program execution*/
{
 int a,b,sum; /* Variable Declarations */
 clrscr(); /* Clear Screen */
 printf("enter two numbers"); /* Request for Input */
 scanf("%d %d",&a,&b); /* Input from user */
sum=a+b; /* Adding two numbers */
printf("sum=%d",sum); /* Output Sum */
getch(); /* To hold output screen */

} /* End of main */

Explanation of C Program -

STORY OF HEADER FILES -

Header files contain definitions of functions and variables which can be
incorporated into any C program by using the pre-processor #include statement.
Standard header files are provided with each compiler, and cover a range of areas,
string handling, mathematical, data conversion, printing and reading of variables.

To use any of the standard functions, the appropriate header file should be
included. This is done at the beginning of the C source file. For example, to use the
function printf() in a program, the line --

 #include <stdio.h>

Should be at the beginning of the source file, because the definition for printf() is found
in the file stdio.h All header files have the extension .h and generally reside in the
/include subdirectory.

 #include <stdio.h>
 #include "mydecls.h"

 The use of angle brackets <> informs the compiler to search the compilers
include directory for the specified file. The use of the double quotes "" around the
filename inform the compiler to search in the current directory for the specified file.

KEYBOARD INPUT -

There is a function in C which allows the programmer to accept input from a
keyboard. The following program illustrates the use of this function,

#include <stdio.h>
main() /* program which introduces keyboard input */
{
int number;
printf("Type in a number \n");
scanf("%d", &number);
printf("The number you typed was %d\n", number);
}

An integer called number is defined. A prompt to enter in a number is then printed using
the statement

 printf("Type in a number \n:");

The scanf routine, which accepts the response, has two arguments. The first ("%d")
specifies what type of data type is expected (ie char, int, or float).

The second argument (&number) specifies the variable into which the typed
response will be placed. In this case the response will be placed into the memory
location associated with the variable number. This explains the special significance of
the & character (which means the address of).

#include –

The #include directive instructs the C Preprocessor to find the text file
“stdio.h”. The name itself means “standard input and output” and the “.h” means it is
a header file rather than a C source file (which have the “.c” suffix). It is a text file and
may be viewed with any text editor.
Comments –

Comments are placed within /* and */ character sequences and may span any
number of lines.

Main -

The main function is most important. This defines the point at which your
program starts to execute. If you do not write a main function your program will not run
(it will have no starting point). In fact, it won’t even compile.

Braces –

C uses the brace character “{” to mean “begin” and “}” to mean “end”. They
are much easier to type and, after a while, a lot easier to read.

Printf () –

The printf function is the standard way of producing output. The function is
defined within the Standard Library, thus it will always be there and always work in the
same way. This example shows that printf and scanf share the same format specifiers.

When presented with “%i” they both handle integers. scanf, because it is a

reading function, reads integers from the keyboard. printf, because it is a writing
function, writes integers to the screen. Expressions Note that C is quite happy to
calculate “a-b” and print it out as an integer value. It would have been possible, but
unnecessary, to create another variable “c”, assign

The printf function writes output to the screen. When it meets the format

specifier %i, an integer is output.

Scanf() -
 The scanf function is the “opposite” of printf. Whereas printf produces output
on the screen, scanf reads from the keyboard. The sequence “%i” instructs scanf to read
an integer from the keyboard. Because “%i %i” is used two integers will be read. The
first value typed placed into the variable “a”, the second into the variable “b”. The
scanf function reads input from the keyboard. When it meets the format specifier %i the

program waits for the user to type an integer.

The space between the two “%i”s in “%i %i” is important: it instructs scanf
that the two numbers typed at the keyboard may be separated by spaces. If “%i,%i” had
been used instead the user would have been forced to type a comma between the two
numbers.
\n –

The sequence of two characters “\” followed by “n” is how C handles new
lines. When printed it causes the cursor to move to the start of the next line.

Return –

 Return causes the value, here 0, to be passed back to the operating system.
How the operating system handles this information is up to it. MS-DOS, for instance,
stores it in the ERRORLEVEL variable. The UNIX Bourne and Korn shells store it in a
temporary variable, $?, which may be used within shell scripts. “Tradition” says that 0
means success.

A value of 1, 2, 3 etc. indicates failure. All operating systems support values
up to 255. Some support values up to 65535, although if portability is important to you,
only values of 0 through 255 should be used.

& -

The “&” is very important with scanf. It allows it to change the variable in
question this is also known as Ampersand . Thus in--

 scanf("%i", &j)

The “&” allows the variable “j” to be changed. Without this rather mysterious
character, C prevents scanf from altering “j” and it would retain the random value it had
previously (unless you’d remembered to initialize it).Since printf does not need to
change the value of any variable it prints, it doesn’t need any “&” signs. Thus if “j”
contains 15, after executing the statement:

 printf("%i", j);

we would confidently expect 15 in the variable because printf would have been
incapable of alerting it.

The Format of C -

Statements are terminated with semicolons.
Indentation is ignored by the compiler.
C is case sensitive - all keywords and Standard.
Library functions are lowercase.
Strings are placed in double quotes.
Newlines are handled via \n
Programs are capable of flagging success or error, those forgetting to do so
have one or other chosen randomly!

The Format of C -

Semicolons –

Semicolons are very important in C. They form a statement terminator they tell
the compiler where one statement ends and the next one begins. If you fail to place one
after each statement, you will get compilation errors.

Free Format -

C is a free format language. This is the up-side of having to use semicolons

everywhere. There is no problem breaking a statement over two lines - all you need do
is not place a semicolon in the middle of it (where you wouldn’t have anyway).

The spaces and tabs that were so carefully placed in the example program are

ignored by the compiler. Indentation is entirely optional, but should be used to make the
program more readable.

Case Sensitivity -

C is a case sensitive language. Although int compiles, “Int”, “INT” or any

other variation will not. All of the 40 or so C keywords are lowercase. All of the
several hundred functions in the Standard Library are lowercase.

Random Behavior –

Having stated that main is to return an integer to the operating system,
forgetting to do so (either by saying return only or by omitting the return entirely) would
cause a random integer to be returned to the operating system.

This random value could be zero (success) in which case your program may

randomly succeed. More likely is a non-zero value which would randomly indicate
failure.

Drill Note- WAP means “Write a Program”, For Topic wise Programming example
pleae see Last section of this book.

Important features of the above C program:

1. The instructions of a C program are typed in lowercase but the variables and
user defined things can be written in uppercase.

2. The first line of this program is the comment. Every comment starts with slash
and asterisk (/*) and ends with asterisk and slash (*/). A comment helps the
programmer in explaining the logic of the program. It improves the readability
of the program.

These comments can be placed anywhere in the program. The
compiler does not read these comments. Nesting of comments is not allowed.
Comments are the explanation of a statement in the program to improve the
readability of the program.

3. Comments are not necessary; it is a good practice to begin a program with a
comment indicating the purpose of the program, its author and the date on which
the program was written.

Any number of comments can be written at any place in the program
example a comment can be written before the ---statement, after the statement
or within the statement. A comment can be split over more than one line such a
comment is called a multi-line comment.

4. The second and third lines of the program are called as header files (stdio.h

and conio.h) which contains information that must be included in the program
before compiling. # is a pre-processor directive or compiler directive. This

statement directs the compiler to include header files in the program before
compiling the program. We can also write <stdio.h> as “stdio.h”.

5. Every C program consists of one or more modules called functions. One of this

functions is called main(). The execution of every program begins with main
function, which may call other functions. Whole program is written in this main
function enclosed in curly brackets. Use of more than one main() is illegal.

6. Declaration of the variables is done immediately after the opening braces of the

program. We cannot declare variables in the middle of a program.

7. Note that every statement in the main function ends with a semicolon(;).

8. Next is the printf() statement:- printf(“Enter two numbers”);

printf is an output command which requests the user to enter a number. This
message is known as “prompt message” and is printed on the output screen as
Enter two numbers

9. The values entered in the computer via the next statement scanf().
scanf(“%d %d”,&a,&b); scanf is an input command which takes some value
from the user according to the given format specifier and stores it at the desired
variable. The & is called as address of operator.

10. The next is the assignment statement:- sum= a+b;

which adds the values in variable a and b and the assign it to variable sum;

11. The last printf() is used to show the calculated value for sum on the screen.

12. Finally the getch() function is used to show the output screen.

13. All the statements inside the main() are slightly ahead than main(). This is
called as indentation. This shows that all the statements are inside the main()
function.

Multiple Choice Questions:

1. C is a :
 a. high level
language.
 b. low level
language.
 c. middle level
language.
 d. assembly
level language.

2. Logic of a program is
called:
 a. syntax.
 b. semantics.
 c. flowchart.
 d. debugging.
3. C language has been
developed by
 a. Ken
Thompson.
 b. Dennis
Ritchie.
 c. Patrick
Naughton.

4. Flowcharts are used to
decide-
 a. sequence of
steps involved in
 Finding solution.
 b. An aid to
making algorithm.
 c. To prepare
decision table.
 d. To debug a
program.

5. C programs are
converted into
 machine language with
the help of -
 a. An Editor.
 b. A compiler.
 c. An operating
system.
 d. None of the
above.
6. C can be used on-
 a. Only MS-DOS
operating system.

 d. Ed Frank. b. Only Linux
operating system.
 c. Only Windows
operating system.
 d. All the above.

Answers:
1(c) 2(b) 3(b) 4(a)

5(b) 6(d)

Theory Questions.

1. Explain the historical development of c

1. When c was developed?
2. Who develop the c?
3. Where c was developed?
4. C is a high, middle or low level?
5. On which operating system it can work?

2. What are the major components of a C program? What significance is attached

to the name main.
3. What are comments. Where can comments can be placed.

4. Are C program required to be typed in lowercase? Can uppercase be used for
anything in a C program. Explain.

5. Which symbol is used to end a C statement. Do all statements end this way?
6. Why are statements indented in a C program.
7. What is a flow chart? Draw the various symbols used in flow chart.

Lab Exercise.

1. WAP to input two numbers from the keyboard and print their sum.
2. WAP to input two numbers from the keyboard and print their average.
3. WAP to calculate the area of a circle.
4. WAP to print the total seconds in a given time (hrs, min, sec’s).
5. WAP to convert temp. From Fahrenheit to centigrade. C=(F-32) * 5/9
6. WAP to SWAP (interchange) two numbers.
7. WAP to SWAP (interchange) 2 numbers without using third variable.
8. WAP to SWAP (interchange) three numbers.
9. WAP to SWAP three numbers without using fourth variable.
10. WAP to calculate the remainder of 2 numbers without using % operator.

Fill in the blanks.

1. ___is the creator of C language. It was developed at ___in ________year.
2. _______ operating system is developed in C.
3. _______ can be stated the ancestor of C.
4. C language is translated into machine code using a _______.
5. C can be used with _______, _______ and _______ operating systems.

CHAPTER

∞ 2 ∞
(Elements of C Language)

C Tokens –

Tokens are the smallest individual unit known as tokens. C recognizes six
types of tokens. C programs are written using these tokens and the syntax of the
language. Following are the C Tokens:

Keywords.
Identifiers.
Literals.
Operators.
Seperators.

1. Keywords -

Keywords are the reserved words whose meaning has already been explained
to the C compiler. These words are defined in the language itself. There are 32
keywords in C.
auto double int struct break
else long switch case enum
register typedef char extern return
union const float short unsigned
continue for signed void default
goto static sizeof volatile do
while if -- -- --

2. Identifiers –

Identifiers are the names given to variables. Using this identifier we can access

that variable. All other names in a C program such as array name or a function name are
also known as Identifiers.

Variables -

An entity that may vary during program execution is called a variable. Or you

can say Variable is the place inside the main memory that is basically used to store
some particular type of data that vary during the program execution. Variable names are
names given to locations in memory. These locations can contain integer, real or
character constants. All the variables that are used in the program should be declared
i.e. typed at the top with their respective data types. The variable declaration tells two
things:

1. It tells the compiler the name of the variable.
2. It also tells the type of value the variable will hold.
E.g.: int a;

float b;
char c;

Variable name may be consist of letter, digits and under line(-) with following the
below rules -

1) They must begin with a letter.
2) Upper case & lower case are significant mean total is differ.
3) Variable name should not be a keyword.

The basic format for declaring variable is

[Data type name] var1, var2, -------;

The variable declaration tells two things -

It tells the compiler the name of the variable.
It also tells the type of value the variable will hold.

Eg: Int a;

Float b;
Char c;

Here a is an integer variable, b is a float variable and c is a character

variable. ; is called as termination symbol or end of statement.

Primary type declaration:

A variable can be used to store a value of any data type. That is the variable

name does not have anything to do with the variable name.

e.g. int a,b,c;

Where a,b,c are the names given to the variables. All the variables of the same

data type are separated by a comma. The declaration statement must end with a
semicolon.

Suppose we want to declare three variables, then…… We write as-

 int a, b, c;

At the same time of declaring these three integer variables, three memory
locations are created in the main memory of the computer for storing each type of
integer variables operational data. These of each allocation field are known as a
location.

Naming a variable

It is better that you use meaningful names for your variables even if this causes
them to become long Names. Also take this in mind that C is case sensitive.

A variable named "COUNTER" is different from a variable named "counter”.
Functions and commands are all case sensitive in C Programming language.

You can use letters, digits and underscore _ character to make your variable
names. Variable names can be up to 31 characters in ANSI C language.

Valid Names -

Only letters, digits and the underscore character may be validly used in
variable names. The first character of a variable may be a letter or an underscore,
although The Standard says to avoid the use of underscores as the first letter.

Thus the variable names “temp_in_celsius”, “index32” and “sine_value” are
allvalid, while “32index”, “temp-in-celsius” and “sine$value” are not. Using variable
name like “_sine” would be frowned upon, although not syntactically invalid.

Variable names may be quite long, with the compiler sorting through the first

31 Characters. Names may be longer than this, but there must be a difference within the
first 31 characters.

3. Literals/Constants:

Constants in C refer to fixed values that do not change during the execution of a
program. In C there are 2 types of constants:

Numeric constants:-

A) Integer constants –

They are a sequence of digits. There are three types of integers: decimal, octal,
hexadecimal.

Decimal numbers contain set of digits 0 to 9 which can be positive (+) or negative (-).

E.g.: 6, 46, 398, 658736, -89, +598 are all integers
Spaces, comma or special symbols are not allowed.
E.g.: 12 897, 364,897, $56, 78@56 are all invalid or wrong numbers.

Octal numbers consist of any combination of digits fro 0 to 7, with a leading 0.
E.g.:037, 0435, 0551.

Hexadecimal numbers has 16 digits 0 to 9 and alphabets A to F (10-15), the sequence

of digits is preceded by 0x or 0X.
E.g.:0X2, 0x9f, 0xbcd.

B) Floating or Real constants -

Integer constants are not sufficient to represent all the quantities such as price, distance,
temperature, etc. These numbers have a decimal point(.) i.e. fractional parts like
65.987, 0.000569, 89.36.

A floating number can also be represented as exponential or scientific notation for e.g.
0.0000123 can be written as 1.23*10-5 or 1.23e-05.Thus the general form is:

Mantissa e exponent
So, 1.23 is called mantissa and -05 is called as exponent

C) Character constant –

i) Single character constants:

A single character alphabets in uppercase(‘A’ to ‘Z’) or lowercase (‘a’ to
‘z’) or digits(0 to 9) or a special symbol(@, #, $, %, *, &, +, -, ., :, / etc.) which are
enclosed in single quotes (‘ ’).

E.g.: ‘a’ or ’A’ or ‘7’or’+’ are all character constants.

Note: All escape sequences are also considered characters.

ii) String constants:

A string constant is a single character or a group of characters enclosed in double
quotes (“ “).

Like: “hello”, “4598”, “hello235”, “5+3”.

Note - The character constant ‘7’ is not the same as digit 7. Every character constants
has an equivalent integer number.

‘A’ to ‘Z’ has ASCII 65 to 90. i.e. ‘A’ has ASCII 65 ‘B’ has ASCII 66 and so on.

‘a’ to ‘z’ has ASCII 97 to 122
‘0’ to ‘9’ has ASCII 48 to 57

‘ ‘ (space) has ASCII 32.
☺ (smiling space) has ASCII 1.

Data Types –

C language is rich in data types. There are 4 classes of data types:

1. Primary data types (int, float, char)
2. User defined data types (enumerator, typedef)
3. Derived data types (array, function, pointers, structure, union)
4. Empty data sets. (void)

Primary Data Types -

Integer

Real
 Character

int or short or short int
occupies 2 bytes-

range: -32768 to +32767

long int or long
occupies 4 bytes
range: -

-2,147,483,648
to+2,147,483,647

float occupies 4 bytes-
range:3.4e-38 to 3.4e38

double occupies 8 bytes-
range:1.7e-308 to 1.7e+308

long double occupies 10 bytes
—

range: 3.4e-4932 to
1.1e+4932

char occupies 1 byte
Range—

-128 to +127

Formula to calculate range -

2n-1
Where n is the number of bits occupied by the data type.

Range of int:
int occupies 2 byte i.e. 16 bits (since 1 byte is equal to 8 bits)

So, 216-1 = 215 = 32768.

Thus range becomes: -32768 to +32767

Note- This formula cannot be used to calculate the range of real data types

(float, double, long double)

Modifiers used with primitive data types -

Signed, unsigned, and short may be applied to character and integer primitive
data types. The modifier long can also be applied to double.

Signed and Unsigned -

The range of int or signed int is -32768 to +32767 and it uses 2 bytes, but
sometimes the program requires only the positive values and these values may exceed
the range of int.

In such cases the data type can be made unsigned by adding the negative range
to the positive one. Thus the range of unsigned int becomes:

0 to 65535

The unsigned int uses only 2 bytes. Thus we can say that the unsigned data type
uses the same number of bytes as the signed data.

Note: The real data types cannot be made unsigned.

Format specifiers:

There are quite a number of format specifiers for printf and scanf. Here are the
basic ones:

 %d print an int argument in decimal.
 %i print an int argument in decimal, hexadecimal or octal.
 %h print an short int argument in decimal.
 %ld print a long int argument in decimal.
 %u print a unsigned int argument.
%lu print a unsigned long int argument.
%f print a float argument.
%lf print a double argument.
%Lf print a long double argument.

%e exponential notation.
%g float or exponential notation.
%o print an int argument in octal (base 8)
%x print an int argument in hexadecimal (base 16)

%X print an int argument in hexadecimal (base 16)in uppercase
%c print a character.
%s print a string.

Escape sequences -

Certain non printable characters, which are used in the printf() function are
called as escape sequences. Escape sequences always begin with backslash (\) .
Commonly used escape sequences are:

Escape sequences--

\a Bell beep.

\b back space(brings cursor one position left)

\f form feed(ejects current paper from printer and loads a new one)

\n New line character.

\r carriage return(brings cursor to the beginning of the line)

\t Horizontal tab.

\v Vertical tab.

\\ To print backslash.

\” To print double quotations.

\’ To print single quotations.

\? To print question mark.

\0 Null (End of string)

Operators –

Operators can be used to perform the required computations on the values.

Types of operators: There are three types of operators:

1. Unary Operator: Operators which work on one operand only.
2. Binary Operator: Operators which work on two operands.
3. Ternary Operator: Operators which work on three operands.

The Rule of Precedence -

Each operator in C has precedence associated with it. This
precedence is used to determine how an expression involving more than one
operator are evaluated.

There are distinct levels of precedence and an operator may belong to

one of the levels. The operators at the higher level of precedence are evaluated
first.

The Rule of Associativity -

The operators of the same precedence are evaluated either from left to

right or from right to left, depending on the level. This is known as the
Associativity property of an operator. There are 45 operators in C:

Classes of operators:

Operators are divided into mainly 9 classes:

1. Arithmetic operator.
2. Unary operators.
3. Relational operators.
4. Assignment operators.
5. Equality operators.
6. Logical operators.
7. Conditional operators.
8. Bitwise operators.

9. Comma operators.

Rank Operators Descriptions
Associativity
1 () Function call. Left to right.
 [] Array element reference

-> Structure operator (used between pointer and member)
. Structure operator (used between object and member)

2 - Unary minus Right to left.
+ Unary plus

 ++ Increment
 -- Decrement

! Logical not
 ~ One’s complement

* Value of address (used with pointers)
& Address of
sizeof Sizeof
(type) Typecasting

3 * Multiplication
/ Division Left to right.
% Modulus

4 + Addition Left to right.
- Subtraction

5 << Left Shift Left to right.
>> Right Shift

6 < Less than
<= Less than equal Left to right.
> Greater than
>= Greater than equal

7 = = Equality (conditions) Left to right.
!= Not Equal

8 & Bitwise AND Left to right.
9 ̂ Bitwise XOR Left to right.
10 | Bitwise OR Left to right.
11 && Logical AND Left to right.
12 || Logical OR Left to right.
13 ? : Condition Operators Right to left.
14 =, *=, Assignment operators Right to left.

/=, %=
+=, -= &=, ^= |=, <<=, >>=

15. , Comma operator Left to right.

1. Arithmetic operator -

These operators include +, -, * , /, % the + and - operators here are used to add and
subtract two operands respectively. * is used to multiply while / is used to divide.

int i=2,j=3,k,l;
float a,b;
k=i/j*j;
l=j/i*i;
a=i/j*j;
b=j/i*i;
printf(“%d, %d, %f, %f”,k,l,a,b);
Output:- 0, 2, 0.000000, 2.00000

% is called modulus operator, this operator is used to calculate remainder.

 int a=5,b=3,c;
 c= a%b;
 printf(“%d”, c);

Output:- 2

Note: The modulus operator does not work on floating numbers.

2. Unary operators -

+,-, ++,- -, sizeof, (typecasting) The + and – in the unary operators are used to show the
sign of the numbers. The ++ operator is used to add 1 to the variable.

 int a=5,b=4;
 a++;
 b--;
 printf(“%d,%d”,a,b);

Output:- 6, 3
if we use a++ or ++a both will increase the value of a by 1. a++ is called postfix while
++a is called prefix.

Postfix
int a=5,b;
b=a++;
printf(“%d, %d”,a,b);

Output:- 6,5

Prefix
int a=5,b;
b=++a;
printf(“%d, %d”,a,b);

Output:- 6,6
int i=3;
i=i++;
printf(“%d”,i);

Output:- 4

int i=2;
printf(“%d %d”,++i, ++i);

1. 3 4
2. 4 3
3. 4 4
4. Output may vary from
compiler to compiler.

Output:- b

3. Relational operators -

<, >,<=,>= These operators are boolean operators(those operators which give answer
in 1 or 0. here 1 is considered true and 0 is false).

 int x=10,a,b;
 a= x>2;
 b=x<2;
 printf(“%d, %d”,a,b);

Output:- 1,0

 int x=10,y=20,z=5,i;
 i=x<y<z;
 printf(“%d”,i);

1. 1
2. 0
3. Error
4. None of the above

Output:- a

4. Assignment operator -

 =, +=, -=, *=, /=, %= These operators are used to assign value to a variable.

a=5; /* assignining 5 to variable a*/
a=5+2; /*valid*/
a=b; /*valid*/
5=a; /*invalid*/
a+b=5; /*invalid*/

The other operators of assignment are used for doing an arithmetic operation on a

variable and then assigning the value to the same variable:
a+=5; is equivalent to a=a+5
a-=5; is equivalent to a=a-5
a*=5; is equivalent to a=a*5
a/=5; is equivalent to a=a/5
a%=5; is equivalent to a=a%5

5. Equality operator - = =, !=

These two operators are used to check whether the given expression has the
right and left sides equal or not. This operator is also a Boolean operator it
also gives answer in 0 or 1.

int a,b,c=5;
a= =5;
b!=2;
printf(“%d, %d”,a,b);

Output:- 1,0

6. Logical Operator - &&, ||, !

These operators are also Boolean operators. && and || operator are used with
two expressions. These expressions generally have either relational operators
or equality operators in them.

Expression
1

Expression
2

&& ¦¦

0 0 0 0
1 0 0 1
0 1 0 1
1 1 1 1

The NOT operator is used to reverse the expression:

Expression !
0 1
1 0

int a=10,b=5,c,d;
c= a>3 && b!=3;

d= (a= =10 ¦¦ b>20);
printf(“%d, %d”,c,d)
Output:- 1, 1

Using the short circuit operator:

 int a=5,b=4,c;
 c= (b = =3 && a++);
 printf(“%d, %d, %d”, a,b,c);

Output:- 5, 4, 0
Now let us try to understand this output, in the expression there are four types

of operators, b= =3 has equality operator. a++ is a unary operator. These two
expressions are connected to each other with a logical AND. And at last value is
assigned to variable c.

In this expression b = = 3 in a false expression thus would give 0. The next
operator is a logical AND, this operator works on two different expressions (AND
gives answer as 1 only if both the expressions are true) the first one being b = = 3 and
the second one a++. The first expression for AND is false so it will not evaluate the
next expression to speed up the execution of the program.

int i=3,j=2,k=0,m;
m = ++i && ++j || ++k;
printf(“%d %d %d %d”, i , j, k,m);
Output:-2 3 0 1

 int i=3,j=2,k=0,m;
 m = ++j && ++i || ++k;
 printf(“%d %d %d %d”, i , j, k,m);

Output:-2 3 0 1

int i=3,j=2,k=0,m;
m = ++i || ++j && ++k;

 printf(“%d %d %d %d”, i , j, k,m);
Output:- 2 2 0 1

int i=3,j=2,k=0,m;
m = ++i && ++j && ++k;

 printf(“%d %d %d %d”, i , j, k,m);

Output:-2 3 11

7. Conditional Operator -

This is the only ternary type of operator in C. It works on three operands. This

class of operators is a set of two operators(? and :) which work together. Let us
understand the syntax of this operator first:

Condition ? true statement : false statement;

The above expression says if condition is true i.e. if it returns a non zero value,

then the value returned will be true statement, otherwise the value returned will be
false statement.

Consider the following e.g.

1. int x=2,y;
 y = x > 5 ? 3 : 5;

 Output: 5

since the value of x is less than 5 so the
condition is false hence the part of
statement after semicolon(:) will be
executed.

2. int a=5,b=4,c;
 a>b? g = a: g = b;

Output:- This will give an error
‘Lvalue required’. The error can be
overcome by enclosing the statement in
the : part within a pair of parenthesis.
a>b? g = a: (g = b); In absence of
parentheses the compiler believes that b
is being assigned to the result of the
expression to the left of second =. Hence
it reports an error.

The limitation of the conditional
operators is that only one statement is
allowed after ? or : .

Note: it is not necessary to use the
conditional operators only with
arithmetic statements,

3. Are the two statements same:
 a<=20?b=30:c=30;
 a<=20?b:c=30;
Output:- No

4. int a=10,b;
 a>=5?b=100:b=200;
 printf(“%d”,b);
 Output- lvalue error occurs.

The second assignment should be written in
parentheses as follows: a>=5?b=100:
(b=200);

5. Rewrite the following set of statements
using conditional operators:
int a=1,b;
if(a>10)
 b=20;

Output:- int a=1,b,dummy;

 a>10?b=20:(dummy=1);

Note that the following will not work:
a>10?b=20:;;

6. Can you suggest some other way to write
the following expression such that 30 is
used only once?
a<=20?b=30:c=30;

Output:- ((a<=20)?&b:&c)=30);

8. Bitwise operators –

Some programs require working on the bits(0 and 1) such as programs interacting

with the hardware parts of the computer. Thus C contains several special operators
which allow working on the bits.

The bitwise operators are generally categorized into three types:

1. The one’s complement operator(~)
2. The logical bitwise operator.(&, |, ^)
3. The shift operators.(<<, >>)

In all there are 6 bitwise operators.

One’s complement operator:

Also referred as the complementation operator. It is a unary operator
that inverts the bits of the operand, i.e. all 0s become 1 and all 1s become 0s.
The operand for the operator must always be an integer value(int, short int,
long int, unsigned, char).

unsigned int a= 5, b;
b = ~a;
printf(“%u”,b);

Output:- will be 65530.

Let us evaluate the output now: the binary equivalent of the number 5 will be

0000 0000 0000 0101.

As already said one’s complement convers all the 1s to 0s and all 0s to 1s.so
the complement will be 1111 1111 1111 1010 and converting the number to a
decimal number will give—

1*215+1*214+1*213+1*212+1*211+1*210+1*29+1*28+1*27+1*26+1*25+1*24+1*23+0*2

32768+16384+8192+4096+2048+1024+512+256+128+64+32+16+8+0+2+0
and the final answer will be 65530.

9. The logical bitwise operators:

There are three logical bitwise operators bitwise AND(&),bitwise

OR(|),bitwise OR()̂. Each of these operators requires two integer values to
work.

Each of the operands are individually converted into their respective

binary numbers.The left most bit of the binary number is called the most
significant bit or MSB. While the right most bit is called the least significant
bit.

Operand 1 Operand

2
& | ^

0 0 0 0 0
0 1 0 1 1
1 0 0 1 1
1 1 1 1 0

The above table explains the working of all the logical bitwise operators.

The shift operators:

The two bitwise shift operators are left shift (<<) and the right shift (>>). Each
of these operators also requires two operands. The first integer operand that represents
the bit pattern to be shifted. The second operand indicates the number of bits to be
shifted.

int a,b;
a=20<<2;
b=20>>2;
printf(“%d %d”,a,b);
Output:- 80, 5

The program will convert 20 to its binary equivalent i.e. 0000 0000 0001 0100

shifting 2 bits to the left would result the bits to be 0000 0000 0101 0000 and the integer
number will be 80. if the bits of the integer number 20 are shifted 2 bits to the right side
the binary number will be 0000 0000 0000 0101.

Thus shifting the number to right by 1 reduces the number to half, while shifting

the number to left by 1 bit doubles the number.

10. Comma operator -

, operator works from left to right but returns the right most value. This
operator is generally used in the for loop. The expressions separated by comma
operator are solved from left to right. On using the comma operator the value and the
type of right most operand is returned. For e.g. in the assignment statement below:

i = (j = 1, k = 2, 3, 4);

The expressions j = 1, k = 2, 3, 4 are evaluated first. Then the value of the expression is
returned as 4 and assigned to i.

1. int a;
a = 5,6;
printf(“%d”,a);
Output:- 5

2. int a;
a = (5,6);
printf(“%d”,a);
Output:- 6

Some Solved Programs:

1. If a four digit number is input through the keyboard, write a program to
obtain the sum of the first and last digit of the number.

 int n,a,b,sum;
 printf(“Enter a four digit number: ”);
 scanf(“%d”,&n);
 a=n%10;
 b=n/1000;
 sum = a + b;
 printf(“Sum of the first and last digit is %d”, sum);
 getch();

2. Print the range of a number. E.g. number 78 is between 70 and 79, 102 is
between 100 and 109.

 int n,lower_r,upper_r;
 printf(“Enter a number: ”);
 scanf(“%d”,&n);

 lower_r = n %10 * 10; /*the arithmetic operators work
from left to right*/

upper_r = lower_r + 10;
 printf(“Range is %d - %d”, lower_r,upper_r);
 getch();

3. Print the various denominations of a given rupee. E.g. if a person has 1779

in his pocket the program should print the following.

500 x 3 = 1500, 100 x 2 = 200, 50 x 1 = 50, 20 x 1 = 20, 10 x 0 = 0, 5 x 1 = 5,
2 x 2 = 4, 1 x 0 = 0

 int Rs,a,b,c,d,e,f,g,h;
 clrscr();
 printf("Enter the amount: ");
 scanf("%d",&Rs);
 a= Rs/500;
 Rs = Rs%500;
 b = Rs/100;
 Rs=Rs%100;

c=Rs/50;
Rs=Rs%50;
d=Rs/20;
Rs=Rs%20;
e=Rs/10;
Rs=Rs%10;
f=Rs/5;
Rs=Rs%5;
g=Rs/2;
Rs=Rs%2;
h=Rs/1;
printf("The various denominations of the given rupees are\n\500 X %2d\n100 X %2d\n
50 X %2d\n 20 X %2d\n 10 X %2d\n 5 X %2d\n\ 2 X %2d\n 1 X
%2d",a,b,c,d,e,f,g,h);
getch();

Multiple choice questions:

1. A whole number with a
decimal
 point is known as:
 a. floating point
number.
 b. character.
 c. integer.

 d. none.
2. The declaration unsigned u indicates:
 a. u is a character
 b. u is an unsigned
integer
 c. u is unsigned
character
 d. u is unsigned
long integer
3. Which statement must not
end with

8. The expression a=4+2%-
8 evaluates to
 a. -6
 b. 6
 c. 4
 d. none of the
above
9. Hierarchy decides which
operator
 a. is most
important
 b. is used first
 c. is fastest
 d. operates on largest
numbers
10. In C a variable can not
contain
 a. blank spaces
 b. hyphen (-)

 semicolon:
 a. #define
 b. variable
declaration
 c. assignment
 d. none
4. Point out the valid variable
names:
 a. gross salary
 b. gross-salary
 c. AVG
 d. AVG.
5. If a is an integer variable, a
=5/2 will
 return a value.
 a. 2.5
 b. 3
 c. 2
 d. 0
6 . The expression, a=7/22*
(3.14+2)*3/5 is evaluated to
 a. 8.28
 b. 6.28
 c. 3.14
 d. 0
7. The expression
a=30*1000+2768
 evaluates to
 a. 32768
 b. -32768
 c. 113040
 d. 0

 c. decimal point
 d. all the above
11. Arithmetic instructions
can not
 Contain--
 a. variables.
 b. constant.
 c. variable names on right of
equal.
 d. variable names on left of
equal.

12. Which of the following
is odd one out
 a. +
 b. -
 c. /
 d. **

13. What will be the
value of d assuming it
to be float after the
operation d=2/7.0

 a. 0
 b. 0.2857
 c. can not be
determined.
 d. none of the
above.

Answers-
1(a) 2(b) 3(a) 4(c)
5(c) 6(d) 7 (b) 8(b)
9(b) 10(d) 11(c) 12(d) 13(b)

Theory Questions –

1. Explain what are data types? Name all the data types in c language with
their size in bytes (in dos operating system). List all the format specifiers.
Also write the formula by which we can calculate the range of a given data
type.

2. Calculate the range of int by this.
3. How many keywords are present in C. Give the name of all the keywords?
4. Explain all the naming rules of a variable in c.
5. Characteristics of a program.
6. Name all the escape sequences.
7. What do you mean by precedence of operators? List all the available
8. operators in c in the order of their precedence. (higher to lower)
9. What do you mean by typecasting? Explain implicit and explicit typecasting

Give the output of the following -

1. int i =4, z =12;
 if(i = 5|| z>50)
printf(“\nwelcome in matrix”);
 else
printf(“\n you may go now”);

Output: welcome in matrix
First in if i is assigned with 5 that is
non zero value and assume as true
now this value involve with (||) OR
op. and in the case of OR operator if
first condition is true it is not go for
the next one and jumps out with true
value this is known as ”short circuit
”.

2. int i=4,z=12;
 if(i = 5&& z>5)
 printf(“hello”);
 else
 printf(“bye”);

13. What should we do to treat the
constant 3.14 as a long double?

 Output: Use 3.14l

14. What will be the output of the
following statement:
 printf(“% %d
%d”,sizeof(3.14f),
 sizeof(3.14), sizeof(3.14l));

 a. 4 4 4
 b. 4 garbage value
garbage value
 c. 4 8 10
 d. Error
 Output: c

15. How floats are stored in binary
form?
O ut put : Floating point numbers

Output: hello
First i is assigned with 5 that is non
zero and assume true now second
condition (z>5) is checked and it is
true so both condition are true and
finally generate the true so the
statement under if is executed and
message “hello” is printed.

3. int i =4,j = -1,k =0,w,x,y,z;
 w = i||j||k;
 x = i&&j&&k;
 y = i|| j&&k;
 z = i&&j||k
 printf(“\nw=%d x=%d y=%d
 z=%d”,w,x,y,z);

Output: w =1 x =0 y =1 z =1
i =4 that is a non zero value means
true condition.
j =-1 that is also a non zero value
means true condition.
k =0 that means false condition.

4. int i =4,j =-1,k =0,y,z;
 y =j+5&&j+1||k+2;
 z = i+5 || j+1 && k+2;
 printf(“\n y =%d z =%d”,y,z);

Output: 1 1
In the first statement j+5 =4(T) and
j+1 =0(F) and k+2 =2(T)
Now first (j+5 && j+1) � (4 && 0)
gives 0 (F) and second comparison
will be (0 || k+2) � (0||2) � 1(T) so
y =1.
In the second statement i+5 =9 and in
the exp. (i+5 || j+1 && k+2) � (9||
j+1&& k+2) and we know in the

are represented in IEEE format.
The Ieee format for floating point
storage uses a sign bit, a mantissa
and an exponent for representing the
power of 2. the sign bit denotes the
sign of the number: a 0 represents a
positive value and a 1 denotes a
negative value. The mantissa is
represented in binary after
converting it to its normalized form.
The normalized form results in a
mantissa whose most significant digit
is always 1. the IEEE format takes
advantage by not storing this bit at
all. The exponent is the integer
stored in unsigned binary format after
adding a positive integer bias. This
ensures that the stored exponent is
always positive. The value of the
bias is 127 for floats and 1023 for
doubles

16. int p = 8, q = 20;
 if(p = = 5 && q<5)
 printf(“Hello Matrix”);
 else
 printf(“Bye Matrix”);

Output: Bye Matrix
At first compiler execute the exp in if
and there the first compare p = = 5
that gives false(0) and here && is
involve in exp. so control jumps out
without checking for the next
condition and gives false in if. Now
because there is false condition in if
control jumps to the else block and
printed “Bye Matrix”.

17. int i = -1, j = 1,k,l;

case of || op. if first condition is true
then control don’t go for the next
condition it jumps out with true result
means 1 so z =1.

5. int i = -3, j = 3;
 if (!i+!j*1)
 printf(“Hello”);
 else
 printf(“Bye”);

Output: Bye
Here first we know the priority of all
used op. Here !(not) gets higher
priority then *(multiplication) and
then +(addition)
i = -3(T) then !i � (! T) � F(0)
similarly !j gives F (0) and 0*1
gives 0 and now exp. will convert
(0+0) � 0 so condition is false and
control jumps out to the else block
and execute it resultant “Bye” is
printed.

6. int a= 40;
 if(a>40 && a<45)
 printf(“a is between 40 and
45”);
 else
 printf(“%d”,a);

Output: 40
Here a>40 is the first compare that
gives false and exp. contains && op.
In the case of the && if first
condition is false then control jumps
out with false condition and in if
condition is false so finally control
jumps to the else block and print the
value of a that is 40.

 k = i&&j;
 l = i||j;
 printf(“%d %d”,i,j);

Output: -1 1
Here simple print the value of i and j
that don’t effect the value of i and j
so the value of i and j remains same
and gets printed through printf().

18. int j = 4,k;
 k = !5 && j;
 printf(“k =%d”,k);

Output: 0
Here ! gets the first priority and
when solved(!5) � (!T) � (F). And
in the case of && op. first condition
is false then control don’t go for the
next statement and jumps out with
false condition means 0 so k =0.

19. int i = -1, j = 1,k,l;
 k = !i&&j;
 l = !i||j;
 printf(“%d %d”,i,j);

Output: -1 1
Here i and j gets printed that doesn’t
effect in the above steps and remains
same.

20. int x = 20, y = 40, z = 45;
 if(x>y && x>z)
 printf(“x is max”);
 else if(y>x && y>z)
 printf(“y is max”);
 else
 printf(“z is max”);

7. int a = 65;
 printf(“\n a>=65 ? %d: %c”,a);

Output 65

8. float a= 0.7;
 if(a<0.7)

printf(“Hello”);
 else

printf(“Bye”);

Output: Hello

9. We want to round off x, a float, to
an int
 value. The correct way to do so
would be:
 a. y=(int) (x+0.5);
 b. y=int (x+0.5);
 c. y=(int) x+0.5;
 d. y=(int) ((int) x+0.5);
 Output: a

10. Which are the three different
types of real data types available in
C and what are the format specifiers
used for them.
 Output: float 4
bytes %f
 double 8
byte %lf
 long double 10
byte %Lf 11. By default any
real number is treated as
 Output: double

12. What should we do to treat the
constant
 3.14 as a float?

Output: z is max
Here first condition in if is checked
(x>y && x>z) and (x>y) gives false
and && op. is involved and here
first condition is false control gives
false result and jumps out to the next
else if block and check for the
condition here also first condition
y>x is true and then second condition
is y>z that is false and finally exp.
gives false and control jumps to the
else block and printed out “z is
max”.

21. int i = 4,j,num;
 j = (num<0?0:num*num);
 printf(“%d”,j);

Output: Garbage
Because num is not initialize and
when condition is checked it
becomes false and compiler execute
the num*num and assign in j. so j is
also contains garbage value.

22. int a,n=30;
 a =(n>5 ? (n<=10 ? 100
:200):500);
 printf(“%d”,n);

Output: 30
Here we see that n is used to check
the condition but a can change by
condition but n is not change in the
above program and we print out the
value of n that is 30.

23. int k = 4;
 (!k != 1?
printf(“\nHello”):printf(“Bye”));

 Output: Use 3.14f
Output: Hello
Here ! op. encounter in the same
statement two times so we solve the
exp using associativity that is left to
right. now clearly (!k) is solved that
gives[(!4) � 0] and exp. convert as
0!=1 that is true so the first printf
after ? gets executed and print out
“Hello”.

Point out the error if any.

1. int x =2,y =3;
 (x = = y ? printf(“%d”,a));

Output: Error
Ternary op.(? :) must be use in pair
here in the above program : is
missing.

2. int a = 3;
 (a = =3 ? printf(“Hello Matrix”);:
 printf(“Bye Matrix”););

Output: No Error

Here first condition is executed that
becomes false so control jumps to
the printf() after the colon and gets
printed “you can go”.

4. int a = 65 ,b;
 b = (a = =65 : printf(“you are
 correct”):printf(“you are
wrong”));

Output: Error
Here the “;” after the first printf()
will terminate the statement whether
it must be terminate after the
“:”(colon) statement i.e. after the
second printf() statement.

3. int a = 5 ,b = 10;
 a = =10 && b!=10 ?
print(“come in”):
printf(“you can go”);

Output: Error
Here “?” is missing from the ternary
op.

5. int a = 10,b;
 a >=5?(b =10): (b =15);
 printf(%d %d“,a,b);

Output: No Error.

In the above program first condition
is checked that comes false and
execute the statement after the colon
sign that assign 15 in b. and then
print out the value of a and b that is
10 and 15 respectively . [This
statement can be written as b= (a>=5
? 10 :15); Floating Point

Lab Exercise –

1. WAP to calculate the sum of digits of a three digit number e.g. 125 is 8
2. WAP to merge three number. E.g. a= 1, b= 2, c = 8 is 128.
3. WAP to print the reverse of a 3 digit number.
4. Compute the gross salary of Mr. HARISH. Input his basic salary. His DA is

40% of basic salary, and HRA is 20% of basic salary.

CHAPTER
∞ 3 ∞

(Control Statements-Conditions)

Introduction-

Programs are much more useful if they can make decisions about what tasks
need to be performed. Making a decision in a C program usually involves testing the
value of one or more variables,

for example, 'if X is greater than Y then carry out task 1,

else carry out task 2'.

C programs can use a range of tests to satisfy many different circumstances. The
example given above uses the if-else construct and is just about the most simple test that
a C program can perform.

However, it is not too difficult to imagine that, having made this decision, task 1 or
task 2 may also be an ifelse type of test, leading to the execution of other, more
specialized, tasks (perhaps including more tests). This can be achieved in C by using as
many nested if-else constructs as required.

The switch construct is similar to the nested if-else but is more appropriate when
different tasks must be selected (switch to) depending on the value of a variable.

1. Condition or Selection or Decision Control Statement
2. Switch case Control Statement.

1. Selection Statements (Decision Control Structure) :-

Selection statement allows the program to choose any one path from
different set of paths of execution based upon the outcome of an expression
or the state of a variable.

1. if
2. if else
3. nested if else
4. if-else-if

2. Switch Case –
 switch(expression)
 {
 case 1:
 statement 1 sequence;

 break;
 case 2:
 statement 2 sequence;
 braek;
 case 3:
 statement 3 sequence;
 break;
 --
 --
 --
 case n:
 break;
 default :
 default statement sequence;
 }

Decision and Switch Case control statements allow the computer to take a

decision as to which statement is to be executed next.

Common programming errors -

1. The if statement does not include the word then. For this reason it is an error
to write:

if(condition) then
 Statement;

2. In the if statement, the condition must be enclosed in parenthesis. Thus it is
an error to write:

if condition
 statement;

3. In the if statement, no semicolon follows the word else. For this reason, it is
a logical error to write. Now false statement will always execute.

if(condition)
 true statement;
else;
 false statement;

4. Using a single equal sign = (for comparing) instead of a double equal sign =
= will be considered as logical error.

5. In a switch, the integer expression that follows switch must be enclosed in

parenthesis. Thus it is an error to write

switch i
{
 ………
 ………
}

Some Solved Problems -

1. To calculate the real roots of the quadratic equation

#include<math.h> /*to use function sqrt*/

float a,b,c,d,r1,r2;
printf("enter three numbers: ");
scanf("%f %f %f",&a,&b,&c);
d=b*b-(4*a*c);
if(d<0)
 printf("roots are imaginary");
else
{
 r1=(-b+sqrt(d))/(2*a); /*to calculate square root */
 r2=(-b-sqrt(d))/(2*a);
 printf("The roots are %f %f",r1,r2);
}

2. If cost price and selling price of an item is input through the keyboard,

WAP to determine whether the seller has made profit or incurred loss. Also
determine how much profit he made or loss be incurred.

float cp,sp;
printf("Enter the cost price and the seling price of the item: ");
scanf("%f %f",&cp,&sp);
if(sp>cp)

printf("profit is Rs. %.2f",sp-
cp); /*%.2f is used to print

number up to 2 decimal places only*/
else if(cp > sp)
 printf("loss is Rs %.2f",cp-sp);
else
 printf(“No Profit No Loss”);

3. WAP to create a calculator which can do addition, subtraction,
multiplication, division, & modulus (remainder).

int a,b,ch;
printf("Enter two nos. ");
scanf("%d%d",&a,&b);
printf("1:\tAdd\n2:\tSubtract\n3:\tMultiply\n4:\tDivide\n5:\tModulus\nEnter
your choice: ");
scanf("%d",&ch);
switch(ch)
{
 case 1:
 printf("%d\n",a+b);
 break;
 case 2:
 printf("%d\n",a-b);
 break;
 case 3:
 printf("%d\n",a*b);
 break;
 case 4:
 printf("%f\n",(float)a/b);
 break;
 case 5:
 printf("%d\n",a%b);
 break;
 default:
 printf("Invalid Input");
}
getch();

Drill Note:

I want to use the opportunity and give you a caution at the end of this lesson.
As there are many commands and programming techniques in any programming
language, you will not be able to remember all of them.

The only way to remember things is to practice them. You need to start
developing your own small programs. Start with lesson exercises and continue with
more sophisticated ones. If you do not do this, all your efforts will become useless in a
while. I always quote this in my programming classes:

Fill in the blanks –

1. If an expression c=e1&&e2&&e3, then if e1 is false, e2 and e3
________ be evaluated.

2. The logical operator == checks for the _________ of the two values.

3. All characters are internally represented as _______.

4. The statement

“ if (ch>= ‘a’ && ch<= ‘z’) returns (‘A’ + ch- ‘a’)”
will return ______ for a given character between ‘a’ and ‘z’.

5. In the printf statement between the % and the conversion character
there may be an h if the integer to be printed as _______.

6. The data type double is actually double precision _______.

7. Operators *, /,% have _________ precedence.

8. Operators &, ^, = = have _________ precedence.

9. A __________ converts thew assembly language programs to machine

code.

10. Braces { and } are used to group the declarations and statements
together into a ______ statement.

11. The operator size of returns size of a data type in a ________.

12. Given that a is unsigned integer variablewhose value is 0 X 6db7, the

expression.
b=a<<6;

 will assign b the value_________

13. The expression 11%3 will evaluate to ________.

14. ? : is a ______ operator.

15. In a C expression with mixed data type containing variables of the float

and double the result is of the type _______.

16. The unary operator ~ is used for performing the ________ on the
variable.

17. The following C expression

1+2*3-5
evaluates the expression to _______.

What will be the output of the following program -

1. int i =4;
switch (i)
{
 default:
 printf(“Matrix”);
 case 1:

printf(“Computer”);
 break;
 case 2:

printf(“Education”);
 break;
 case 3:
 printf(“Hello”);
}
Output:- MatrixComputer

2. int i =4, j=2;
switch (i)
{
 case 1:

13. int a=300,b,c;
if(a>=400)
 b=300;
 c=200;
 printf(“\n%d %d”,b,c);
Output:-b contains garbage and
c=200. Because a is initialize with
300 and when condition is checked
then it becomes false and b can’t
assign with 300 so still b contain
garbage value and if doesn’t contain
any braces so the scope of if is only
on next statement so c is out of the if
scope and it will be assign with 200.

14. int a=500,b,c;
if(a>=400)
 b=300;

c=200;
printf(“\n%d %d”,b,c);

Output: -300 200. Because a is
initialize with 500 and when

 printf(“Hello”);
 break;
 case j:
 printf(“Bye”);
 break;
}
Output:- Error constant expressions
are required in switch, we cannot use
j.

3. int i =1;
switch (i)
{
 case 1:
 printf(“Hello”);
 break;
 case 1 * 2 + 4:
 printf(“Bye”);
 break;
}
Output:- No error. Constant
expressions like 1*2+4 are
acceptable

4. int i =4;
switch (i)
{
}
printf(“Hello World”);
Output:- A switch can occur that
does not have any statement.
5. int i =1;
switch (i)
{
 printf(“Matrix”);/*common
for both
 cases*/
 case 1:
 printf(“Hello”);
 break;

condition is checked then it becomes
true and b is assign with 300 if
doesn’t contain any braces so the
scope of if is only on next statement
so c is out of the if scope and it will
be assign with 200.

15. int x =10,y =20;
if(x = = y);
 printf(“\n%d %d”,x,y);
Output:-10 20.
Because if contains ; so it is
understand as
if(x = =y)
 {
 ;
 }
printf(“\n%d %d”,x,y);
now it is clear that if contains null
statement and after executing if
control reach on printf() that print
out the value of x and y that is 10 and
20 respectively.

16. int a = 3;
float b = 3.0;
if(a = = b)
 printf(“\n a and b are
equal”);
else
 printf(“\n a and b are not
equal”);
Output:-a and b are not equal
because a and b both are assigned
with 3 and when condition is
checked it becomes true so the next
statement to if is executed and print
out “a and b are not equal”.

17. int x=3,y=5;

 case 2:
 printf(“Bye”);
 break;
}
Output:- Hello
Though there is no error but the first
printf can never get executed. In
other words all the statements in a
switch must belong to some case or
the other.

6. Can we use switch statement to
switch on string?
Output:- No switch can work only
on integer constants or constant
expressions.

7. We want to test whether a value
lies in the range 2 to 4 or 5 to 7. Can
we do this using switch?
Output:- yes but it is not practical if
the ranges are bigger.

8. switch(a)
{
 case 2:
 case 3:
 case 4:
 /*some statements*/
 break;
 case 5:
 case 6:
 case 7:
 /*some other statements*/
 break;
}
The way break is used to take the
control of switch can continue be
used to take the control to the
beginning of the switch?

if (x = =3)
 printf(“\n %d”,x);
else;
 printf(“\n%d”,y);
Output:-
3
5
Because x is initializing with 3 and
when condition is checked it
becomes true and will print out 3.
Now control jumps out of the if
structure and gets execute the next
print statement that print out the value
of y that is 5. Now the question is
why next printf()
is executed? This is so happens
because the next statement after else
is ; not printf().
That means else contain Null
statement and next printf() is out of
the if structure.
18. int x = 3,y,z;
y = x =10;
z = x<10;
printf(“\n x =%d y =%d z = %d”);
Output:-
x = 10 y =10 z =0
here in first x is initialize with 3 and
in the next statement x again assign
with 10 and the value of x is again
assign in y so the value of y is also
10. now in the next statement
conditional operator(<) gets higher
priority that’s why first condition is
checked and if becomes false and
gives the value 0. so z is assign with
0.
Note: when a condition is true it
gives 1(non-zero) and when it
becomes false it gives 0(zero) and

Output:- No, continue can work
only with loops and not switch.

9. char card = 3;
switch(card)
{
 case 1:
 printf(“\n King”);
 case 2:
 printf(“Queen”);
 default:
 printf(“Jokar”);
}
printf(“\nYou have losing the
game:”);
Output:- Joker
 You have lost the
game:
In the above program the case
variable is card that value is 3. and
there is no case constant that is 3 so
no perfect match here and compiler
execute the printf() statement after
the default that print out “Jokar” and
then control comes out to the switch
block when comes out met with a
printf() statement that print “You
have lost the game”.

10. int prize = 3;
switch(prize)
{
 case ‘3’:

printf(“\nSilver:”);
 break;
 case 3:

printf(“\nGold”)
 break;

vice versa.

19. int k=35;
printf(“%d %d %d”,k = =35,k =
50,k>40);
Output:-0 50 0
When printf() statement is executed
the first the expression and
comparison take place and the
expression is solved from right to
left order so first condition (k>40) is
checked because k = 35 so it
becomes false and gives 0. now
continuing in order right to left next k
= 50 is executed and it assigns 50 in
k and now k is compared with 35
that gives false because k is 50 not
equal 35 and gives 0. and printing
will take place from left to right.

20. int a=97;
char b =’a’;
if(a = = b)
 printf(“hello matrix”);
else
 printf(“bye matrix”);
Output:-hello matrix
here a and b are compared against
equality but b contains ‘a’ that ASCII
value is 97. so both a and b are equal
and condition becomes true and gets
execute the statement next to the if
statement.

21. int x = 15;
printf(“%d %d %d ”,x!=15,x
=20,x<30);

Output:-1 20 1

 default:
 printf(“\n
Bronze”);
}
Output:- It will always print “Gold”
Here compiler match the value of the
case variable with the case constant,
the comparison will be between 3
and ‘3’ that is unsuccessful match
because one is integer and another is
character and when character is
converted with the ASCII value it
will be 68 that is not equal to 3. and
then control jumps to the next case
that will be the perfect match so it
will print “Gold” and jumps out to
the switch block due to break
statement.

11. int c =3;
switch(c)
{
 case 0:
 printf(“Windows
and Dos:”);
 case 1+0:
 printf(“Networking
and
 security:”);
 case 4/2:

printf(“Programming:”);
 case 8%5:
 printf(“Unix and
Linux:”);
}
Output:- Unix and Linux:
In this program first compiler solve
the exp. of case constant and then
match the case variable with the case

Here in the printf() statement first
expression or comparison take place
in the order R to L and firs x<30 is
checked because x is 15 so this is
true and gives 1 now x is assigned
with 20 and then x!=15 take place
and gives 1 because of true
condition because x is assigned with
20 first. and now the result gets
printed in the order L to R.

22. int ch = ‘a’+ ‘b’ ;
switch(ch)
{
 case ‘a’:
 case ‘b’:
 printf(“you have
secured a”);
 case ‘A’:
 printf(“you are
confused:”);
 case ‘b’ + ‘a’:
 printf(“you have
secured both a and b:”);
}

Output:- you have secured both a
and b.

23.In the above program fist exp. ch
= ‘a’ + ‘b’ is solved. Because
character constant will convert with
their ascii value and ch = 65 +
66 � ch = 131 and then switch
variable will match with the case
constant and because there same
constant is exist as in the above exp.
(‘b’+’a’ � 131) so condition
becomes true and the statement “you
have secured both a and b:” will

constant. Here 8%5 gives 3 that will
match with the case variable and that
will print “Unix and Linux:”

12. int k;
float j = 2.0;
switch(k = j+1)
{
 case 3:
 printf(“you have
passed:”);
 break;
 default:
 printf(“Leave It”);
}
Output:- you have passed:
Here first compiler solve the exp k =
j+1 and gives k = 3. and now k
becomes case variable that value is
matched with the case constant and
print out “you have passed” and then
jumps out to the switch block
because of “break” statement.

print.

Point out the errors, if any, in the following programs:

1. float a =12.25, b=5.2;
if(a = b)
printf(“\n a and b becomes equal”);

Output:- No Error.

Here in the if statement a is not
compared with b, a is assigned with
b that is non zero(5.2) and now in if
non zero value gets executed as true
and gets execute printf statement
under the if.

7. int a=10,b=15;
if(a = =b)
 printf(“equal”);
elseif

 printf(“a is max”);
else

 printf(“b is max”);
Output:-
Error � elseif is not a single
keyword in c. both are must be
separate so space is required
between else and if.

2. if(‘A’<’a’)
 printf(“\n A is smaller than
a”);

Output:- No Error.

Here in if statement A(capital) is
compared with a(small) and we
know the character is first replaced
by it’s ASCII value and than any
comparison make places and because
ASCII of A is 65 and ASCII of a is
97.

so the condition gets execute with
true result.

3. int x =10;
if(x>=2) then
 printf(“Good”);

Output:-

Error � “then” can’t be used in c.

4. int j =10, k =12;
if(k>=j)
{

{
 k=j;
 j=k;
}

}
Output:- No Error

Any no. of braces can be used.

5. int a =10, b = 15;
if(a%2 = b%5)

printf(“wonderful”);

8. int ch=1;
switch(ch)
{
 case 0;
 printf(“\nClub”);
 case 1;

printf(“\nDiamond”);
}
Output:- Error.
Because there will be the semicolon
instead of colon after the case.

9. int temp;
scanf(“%d”,temp);
switch(temp);
{
 case (temp<=20)
 printf(“Oh! Damn
Cool”);
 case (temp>20 &&
temp<=30)
 printf(“Rainy
season:”);
 case (temp>30 &&
temp<=40)
printf(“\nwish me I am on

Everest:”);
 default :
printf(“\n Let’s Go for a Picnic:”);
}

Output:-

Error. Relational op. can’t be used in
cases.

10. float a = 3.5;
switch(a)

Output:-
Error � Lvalue required.
first the expression in if is solved
and % op. gets higher priority than =
so first b%5 gives 5 and a%2 gives
also 5. (Order R to L) and exp.
becomes 5=5. And now assignment
take place but we know we can’t
assign a value in constant.

6. int a,b;
printf(“Enter two num:”);
scanf(“%d %d”,a,b);
if(a>b)
 printf(“a is max”);
else
 printf(“b is max”);

Output:-

Error � &(ampersand) is required
in scanf().
Here no error will be reported by the
compiler but we can’t get desired
result because when we input any
two num on run time it will not store
in a and b because it don’t know the
address of a and b automatically we
must give it

{
 case 0.5:
 printf(“Hello C:”);
 case1.5:
 printf(“Working in
C:”);
 case 2.5:
 printf(“Test your C Skill:”);
 case 3.5:
 printf(“Simply
C:”);
}

Output:-

Error. Floating point constants is not
allowed in cases.

11. int a = 3,b= 4,c;
c = b-a;
switch(c)
{
 case 1||2:
 printf(“Hello
Matrix:”);
 break;
 case a||b:
 printf(\nBye
Matrix“);
 break;
}

Output:-

Error. A case need constant value or
constant exp. Logical op. is not
allowed in cases.

Lab Exercise (WAP- Write a Program)-

1. WAP to check whether a number input through the keyboard is even or odd.

2. WAP to print the maximum out of two numbers.

3. WAP to print the maximum out of three numbers.

4. WAP to print the maximum out of four numbers.

5. WAP to print the maximum out of four numbers. (Short logic)

6. WAP to print the second maximum out of three numbers.

7. WAP to check whether a year is leap year or not.

8. WAP to calculate the grade of a student after the input of marks of that
student.

 Percentage >= 90 grade is ‘A’
 Percentage >= 70 grade is ‘B’
 Percentage >= 50 grade is ‘C’
 Percentage < 50 grade is ‘F’

9. WAP to compute the tel. bill of a customer. Montly Rental Rs.100.Rates are
as follows.

 No of calls 1to 100 rate = 0
 No of calls 101 to 200 rate = 0.80
 No of calls 201to 500 rate = 1.00
 No of calls 501to -- rate = 1.20

10. WAP to compute the pension of an employee.

 If the person is male.

 Age >= 90 pension is 4000
 Age >= 60 pension is 6000
 Age < 60 pension is 0

 if the person is female.

 Age >= 90 pension is 3000
 Age >= 60 pension is 5000
 Age < 60 pension is 0

11. WAP to check whether a 3 digit number is a magic number or not.
(Palindrome) A number is a magic number if its reverse is same as the
original number.

12. Any year is entered through the keyboard, WAP to determine the year is
leap or not. Use the logical operators && and ||.

13. Any character is entered through the keyboard, WAP to determine whether

the character entered is a capital letter, a small case letter, a digit or a
special symbol.

14. WAP using conditional operators to determine whether a year entered

through the keyboard is a leap year or not.

CHAPTER
∞ 4 ∞

(Control Statements (Looping))

Introduction-

Sometimes we want some part of our code to be executed more than once. We

can either repeat the code in our program or use loops instead. It is obvious that if for
example we need to execute some part of code for a hundred or more times it is not
practical to repeat the code. Alternatively we can use our repeating code inside a loop.

while(not a hundred times)

{

code

}

The loop repeat the some portionof the program until a specified number of
time or until a particular condition is being satisfied. Or In other words you can say,
The Looping is a process of repeating a single statement or a group of statements until
some condition for termination of the loop is satisfied.

There are a few kinds of loop commands in C programming language. We will
see these commands in next sections.

There are four Parts of a loop -

1. Initialization.

2. Conditions
3. Statements
4. Incrementation or Decrementation.

Don’t forget,Looping is a process of repeating a single statement or a group of
statements until some condition for termination of the loop is satisfied.

Type of loops -

Entry control loops: Those loops in which condition is checked before the
execution of the statement. Thus if the condition is false in the beginning the loop will
not run even once.

e.g. for loop, while loop.

Exit control loops: Those loops in which the condition is checked after the
execution of the statement. Thus if the condition is false in the beginning the loop will
run at least once.

e.g. do while loop

while loop –

C has three loops, while is the simplest of them all. It is given a condition (in
parentheses, just like with the if statement) which it evaluates. If the condition evaluates
to true (non zero, as seen before) the body of the loop is executed. The condition is
evaluated again, if still true, the body of the loop is executed again. This continues until
the condition finally evaluates to false. Then execution jumps to the first statement that
follows on after the loop

while loop is constructed of a condition and a single command or a block of
commands that must run in a loop. As we have told earlier a block of commands is a
series of commands enclosed in two opening and closing braces.

In the while loop, the condition is evaluated and if it is true the statement of the
loop is executed. After the execution of statement and increment or decrement, the loop
condition is tested again. This process of repeated execution of statement, increment or
decrement and testing of condition continuous till the condition finally becomes false
and the control of the loop is transferred to the next statement.

Once again if more than one statement is required in the body of the loop, begin and end
braces must be used.

It is the simplest of all the loops. This loop is used as follows:

initialize;
while(condition)
{

 statement;
 increment or decrement;

}

while loop is an entry control loop. The condition is evaluated and if it is true

the statement of the loop is executed. After the execution of statement and increment or
decrement, the loop condition is tested again. This process of repeated execution of
statement, increment or decrement and testing of condition continuous till the condition
finally becomes false and the control of the loop is transferred to the next statement.

Syntax:

initialization;
while(condition)
{

 statement;
 incrementation or decrementation;

}
Free syntax:

while(condition)
command;

while(condition)
 {
 block of commands
 }

Loop condition is a boolean expression. A boolean expression is a logical
statement which is either correct or incorrect. It has a value of 1 if the logical statement
is valid and its value is 0 if it is not. For example the Boolean statement (3>4) is invalid
and therefore has a value of 0. While the statement

(10==10) is a valid logical statement and therefore its value is 1.

Semicolon Warning! -

Avoid Semicolons After while . We have already seen that problems can arise
if a semicolon is placed after an if statement. A similar problem exists with loops,
although it is more serious. With if the no op statement is potentially executed only once.
With a loop it may be executed an infinite number of times.

Example -

#include<stdio.h>

main()

{

int i=0;

while(i<100)

{

printf("\ni=%d",i);

i=i+1;

}

system("pause");

}

In above example i=i+1 means: add 1 to i and then assign it to i or simply increase its
value. As we saw earlier, there is a special operator in C programming language that
does the same thing. We can use the

expression i++ instead of i=i+1.

Type Conversion -

From time to time you will need to convert type of a value or variable to
assign it to a variable from another type. This type of conversions may be useful in
different situations, for example when you want to convert type of a variable to become
compatible with a function with different type of arguments.

Some rules are implemented in C programming language for this
purpose.Automatic type conversion takes place in some cases. Char is automatically
converted to int. Unsigned int will be automatically converted to int.

If there are two different types in an expression then both will convert to better
type.In an assignment statement, final result of calculation will be converted to the type
of the variable which will hold the result of the calculation (ex. the variable “count” in
the assignment count=i+1;)

For example if you add two values from int and float type and assign it to a
double type variable, result will be double.

Using loops in an example -

Write a program – To accept scores of a person and calculate sum of them and their
average and print them.

#include<stdio.h>
#include<conio.h>
main()
{
int count=0;
float num=0,sum=0,avg=0;
printf("Enter score (-1 to stop): ");
scanf("%f",&num);
while(num>=0)
{
sum=sum+num;
count++;
printf("Enter score (-1 to stop): ");
scanf("%f",&num);
}
avg=sum/count;
printf("\nAverage=%f",avg);
printf("\nSum=%f\n",sum);
system("pause");
}

This example we get first number and then enter the loop. We will stay inside
loop until user enters a value smaller than 0. If user enters a value lower than 0 we will
interpret it as STOP receiving scores.

Here are the output results of a sample run:

Enter score (-1 to stop): 12

Enter score (-1 to stop): 14

Enter score (-1 to stop): -1

Average=13.000000

Sum=26.000000

Drill Note-

Once again I am telling you, for more programming examples according to chapter
topics please read last chapter of this book where I mentioned more than 200 C
Programs for your practice.

When user enters -1 as the value of num, logical expression inside loop condition
becomes false (invalid) as num>=0 is not a valid statement. Just remember that “while
loop” will continue running until the logical condition inside its parentheses becomes
false (and in that case it terminates).

Print the sequence 1, 2, 3, 4, 5,…………..N

int i,n;

printf("Enter the value of N ");

scanf("%d",&n);

i=1;

while(i<=n)

{

 printf("%d,",i);

 i++;

}

printf("\b "); /*to remove the comma (,) printed at the last */

do while loop -

The do while loop in C is an “upside down” version of the while loop.
Whereas while has the condition followed by the body, do while has the body followed
by the condition.

This means the body must be executed before the condition is reached. Thus
the body is guaranteed to be executed at least once.if the condition is false the loop body

is never executed again.

It is an exit control loop. The loop is used as follows:
initialize;
do
{

statement;
increment or decrement;

}
while(condition);

Here the condition is tested after the execution of the statement and increment

or decrement. Thus in this type of loop the program proceeds to evaluate the body of the
loop first and the condition is tested after that. Thus even if the condition is false in the
beginning then also the statement will be executed at least once. It is an exit control
loop.

int j = 5;

printf("start\n");

do

printf("j = %i\n", j--);

while(j > 0);

printf("stop\n");

output –

start
j = 5
j = 4
j = 3
j = 2
j = 1
stop
e.g

WAP to Print the sequence 1, 2, 3, 4, 5,…………..N

int i,n;

printf("Enter the value of N ");

scanf("%d",&n);

i=1;

do

{

printf("%d,",i);

i++;

} while(i<=n);

printf("\b "); /*to remove the comma (,) printed at the last */

Drill Note- Most Important thing , do while guarantees execution at least once.

for loop -

As I told earlier, there are many kinds of loops in C programming language.
We will learn about for loop in this section.

“For loop” is something similar to while loop but it is more complex. “For
loop” is constructed from a control statement that determines how many times the loop
will run and a command section. Command section is either a single command or a
block of commands.

Drill Note- Remember that for loop encapsulates the essential elements of a loop into
one statement. For more examples please see last chapter of this book

for loop is also an entry control loop which provides a more concise loop control
structure. The loop is used as:

for (initialize; condition; increment or decrement)
{

 statement;
}

Initialization part is performed only once at “for loop” start. We can initialize
a loop variable here.

Test condition is the most important part of the loop. Loop will continue to run

if this condition is valid (True). If the condition becomes invalid (false) then the loop
will terminate.

Run every time command’ section will be performed in every loop cycle. We
use this part to reach the final condition for terminating the loop.

For example we can increase or decrease loop variable’s value in a way that
after specified number of cycles the loop condition becomes invalid and “for loop” can
terminate.

At this step we rewrite example 3-1 with for loop. Just pay attention that we no
more need I=I+1 for increasing loop variable. It is now included inside “for loop”
condition phrase (i++).

Example –

#include<stdio.h>
#include<conio.h>

main()
{
int i=0;
for(i=0;i<100;i++)
printf("\ni=%d",i);
system("pause");

 }

Drill Note- Stdio.h – Standard Input Output.

Drill Note- Conio.h – Console Input Output.

Drill Note- Essentially all you need to remember the two semicolon characters
 that must separate the three parts of the construct.

Example –
Write a program that gets temperatures of week days and calculate
 average temperature for that week.

#include<stdio.h>

#include<conio.h>

main()
{
int count=0;
float num=0,sum=0,avg=0;
for(count=0;count<7;count ++)
{
printf("Enter temperature : ");
scanf("%f",&num);
sum=sum+num;
}
avg=sum/7;
printf("\nAverage=%f\n",avg);
system("pause");
}

Example -

Below example will print a multiplication chart (from 1*1 to 9*9). Run the program
and see the results.

#include<stdio.h>

main()

{

int i,j;

for(i=1;i<10;i++)

{

for(j=1;j<10;j++)

printf("%3d",i*j);

printf("\n");

}

system("pause");

for And while Compared -

The construct:

For (initial-part; while-condition; update-part)

Body

Is equivalent to:

Initial-part;

While (while-condition)

{

Body;

Update-part;

}

Here, the initialization works first then the condition is evaluated if the

condition is true the execution of the statement takes first and then the increment or
decrement of the variable takes place the condition is again tested and the process goes
on till the loop condition becomes false.

The initialization takes place using some assignment operator. If more then one
variable is to be initialized then assignments are separated by commas.

After all the assignments are written a semicolon is used to separate them from
conditions. If there are more than one condition then they are separated by either logical
AND (&&) or logical OR (||).

After all the conditions are given a semicolon is used before giving the
increments or decrements.

If there are more than one statement in the body of the loop then using the
parenthesis is compulsory.

A unique aspect of for loop is that one or more parts of for loop can be omitted
if they are not required. However the semicolons separating the different parts of the
loop are necessary.

A delay loop can also be set up using the null statement: for(i=100;i>0;i--);
In this loop there is no statement thus first the variable i is initialized by 100,

the condition is tested ,then the decrement takes place, again the condition is tested, i is
decreased again and it is repeated till the condition becomes false.

Another unique feature of the for loop is nesting that is placing one loop as a
statement for another loop. In ANSI C the nesting is allowed up to 15 levels, however
some compilers allow even more.
Jump statements (New Topic)-

Loop performs a set of statements, till the condition becomes false. The
number of times a loop is to be repeated is decided in advance and a condition is set.
But sometimes it becomes necessary to skip certain part of the loop or terminate the
loop if a particular condition is true then jump statements come to action:

C supports four jump statements:

i. break.
ii. continue.
iii. goto.
iv return.

break -

The break statement is used inside a loop, to directly come out of the
loop. We have already used break in switch statement. It is used to skip the
execution of the loop any further and transfer the control of the program to the
statement following the loop.

continue-

Sometimes it is necessary to skip the execution of the statement when
certain condition is true. continue does not terminate the loop but jumps
directly to the next iteration. In for loop continue brings the control to the next
increment or decrement but in while or do while loop continue causes the
control of the loop to jump directly to the condition.

goto-
It is also used to jump from one part of the program to the other or exit

from the deeply nested loop. But using goto is not a good practice because it
makes the logic complicated and long programs unreadable.

return -
Used in a function to return some value and to jump from called

function definition to calling function definition.

exit() -

It is not a jump statement. It is used to terminate the program or directly exit
from the program without following the intermediate statements. It is a library function
included in stdlib.h and process.h. exit is used as: exit()

Drill Note - break, goto, continue, return are all keywords.

Let’s Discuss these all in detail-

Break Statement-

It must seem strange that C has a construct to deliberately create an infinite
loop. Such a loop would seem something to avoid at all costs!

Nonetheless it is possible to put infinite loops to work in C by jumping out of
them. Any loop, no matter what the condition, can be jumped out of using the C keyword
break. We saw the loop below earlier :

printf("enter an integer: ");
while(scanf("%i", &j) != 1) {
while((ch = getchar()) != '\n')
;
printf("enter an integer: ");

break is Really Goto!
It doesn’t necessarily address the problem very well because it now uses the

equivalent of a goto statement! The goto is the scourge of modern programming, because
of its close relationship some companies ban the use of break. If it is to be used at all, it
should be used in moderation, overuse is liable to create spaghetti

break, switch and Loops-

This is exactly the same break keyword as used in the switch statement. If a
break is placed within a switch within a loop, the break forces an exit from the switch
and NOT the loop. There is no way to change this

continue
"continue" statement

Drill Note – Continue statement can be used in loops. Like break command
"continue" changes flow of a program. It does not terminate the loop however. It just
skips the rest of current iteration of the loop and returns to starting point of the loop.

Example -
#include<stdio.h>
main()
{
while((ch=getchar())!='\n')
{
if(ch=='.')
continue;
putchar(ch);
}
system("pause");
}

In above example, program accepts all input but omits the '.' character from it.
The text will be echoed as you enter it but the main output will be printed after you
press the enter key (which is equal to inserting a "\n" character) is pressed. As we told
earlier this is because getchar() function is a buffered input function.

Whereas break forces an immediate exit from the nearest enclosing loop the

continue keyword causes the next iteration of the loop.

In the case of while and do while loops, it jumps straight to the condition and
re-evaluates it. In the case of the for loop, it jumps onto the update part of the loop,
executes that, then re-evaluates the condition.
continue is Really Goto-

Statements applying to the use of break similarly apply to continue. It is just
another form of goto and should be used with care.

Excessive use of continue can lead to spaghetti instead of code. In fact the loop
above could just as easily be written as:

for(j = 1; j <= 10; j++)
if(j % 3 != 0)
printf("j = %i\n", j);

continue, switch and Loops -

Whereas break has an effect on the switch statement, continue has no
sucheffect. Thus a continue placed within a switch within a loop would affect the loop.

Drill Note –

if (then) else - watch the semicolons
switch can test integer values
while, do while, for - watch the semicolons again

Answer the Following Questions -

1. The three parts of the for loop are:

a. The i __________ expression
b. The c__________ expression
c. The i__________ expression

2. The break statement is used to exit
from:

a. An if statement.
b. A for loop
c. A program
d. The main() function

3. A do-while loop is useful when we
want that the statements within the loop
must be executed:

a. Only once
b. Atleast once
c. More than once
d. None of the above.

4. In what sequence the initialization,
condition, execution is done in the do-
while loop-

a. Initialization, testing, execution.
b. Initialization, execution, testing
c. Testing, execution, Initialization

5. Which of the following statements is
used to take the control to the beginning of
the loop—

a. exit
b. break
c. continue
d. none of the above.

6. int i=1;
 for(; i++ ;)
 printf(“%d”, i);

7. int a=5;
 do
 {

printf(“%d\n”,a);
a = -1;

 }while(a >0);

8. What will be the value of sum after the
execution of the following program:
int sum, index;
sum=1;
index=9;
do
{
 index=index-1;

sum=sum*2;
}while(index>9);

Answers –

1. initialization,condition,increment 2. b 3. b 4. b 5. C
6. 1,2,3..32767, -32768,…infinite loop 7. 5 8. 2

SOME SOLVED PROGRAMS -

1. Print the numbers in reverse order from N to 1
 N………….5, 4, 3, 2, 1

int i,n;
printf("Enter the value of N ");
scanf("%d",&n);
for(i=n;i>=1;i--)
printf("%d,",i);
printf("\b "); /*To remove the comma (,) printed at the last */

2. Print the Fibonnicci series1, 1, 2, 3, 5, 8, 13,………………..N

int prev,next,cnt,sum,n;
printf("Enter the value of N ");
scanf("%d",&n);
prev=0;
next=cnt=1;
while(cnt<=n)
 {
 printf("%d,",next);
 sum = prev + next;
 prev = next;
 next = sum;

 cnt++;
 }
printf("\b ");

3. To print the Factorial of number N

 int n,i;
 long int fact;
 clrscr();
 printf("Enter the number to get Factorial: ");
 scanf("%d",&n);
 for(i=n,fact=1;i>=1;i--)
 fact = fact * i;
 printf("Fact is %ld", fact);

4. /*WAP to print the following

 1
 12
 123
 1234
 12345 up to N rows*/
int n,i,j;
clrscr();
printf("Enter the number of Rows: ");
scanf("%d",&n);
for(i=1;i<=n;i++)
 {
 for(j=1;j<=i;j++)
 printf("%d",j);
 printf("\n");
 }

5. WAP to check if the given sequence of numbers is in ascending order or

not. The sentinel value for the sequence is -1.
enum {false,true};

 int prev,n,flag=true,i;
 printf("Enter number 1 ");
 scanf("%d",&n);
 prev = n;
 i=2;

 while(n != -1)
 {
 printf("Enter number %d ",i++);
 scanf("%d",&n);
 if(n < prev && n != -1)
 flag=false;
 prev=n;
 }
 if(flag = = false)
 printf("Not in ascending order");
 else
 printf("In ascending order");

6. To print the sum of 9+99+999+............... n terms.

 long int term,sum=0;

int n,cnt;
 clrscr();
 printf("Enter the value of n");
 scanf("%d",&n);
 for(cnt=1,term=9;cnt<=n;cnt++)
 {
 printf("%ld\n",term);

sum+=term; /*adding the term to sum using
assignment operator*/

 term=(term*10) + 9;
 }
 printf("%ld",sum);

7. /*pascal triangle
1
11
121
1331
14641 */

main()
{
int i,j,n,b; /*b=preceding no*/
printf("enter the number of rows: ");
scanf("%d",&n);
for(i=0;i<n;i++)

{
b=1;
 for(j=0;j<=i;j++)
{
 if(i==0||j==0)
printf("%3d",b); /*3d is used for providing each

number a space of 3 characters*/
else
{
 b=b*(i-j+1)/j;
 printf("%3d",b);
 }
}
 printf("\n");

}

8. Convert decimal no. to its binary equivalent

main()
{
 int n,i,a,r;
 printf("enter the no.: ");
 scanf("%d",&n);
 for(i=15;i>=0;i--)
 {
 a=1<<i;
 r=n&a;
 if(r= =0)
 printf("0");
 else
 printf("1");
 }
}

9. WAP to compute the natural logarithm of a given number
#include<math.h>
main()
{
 int x, i;
 float result=0;

 printf("\nEnter the value of x:");
 scanf("%d",&x);
 for(i=1;i<=7;i++)
 {
 if(i==1)
 result=result+pow((x-1.0)/x,i);
 else
 result=result+(1.0/2)*pow((x-1.0)/x,i);
 }
 printf("Log(%d) = %f",x,result);
}

SOME SOLVED PROGRAMS –

1. check a number to be prime or not*/
enum bool{false,true};

 int i,n;
 enum bool FLAG=true;
 clrscr();
 printf("Enter a number: ");
 scanf("%d",&n);
 for(i=2;i<=n/2;i++)
 {
 if(n%i= =0)
 {
 FLAG=false;
 break;
 }
 }
 if(FLAG= =true)
 printf("Prime number");
 else
 printf("Not Prime Number");

2. WAP to generate n random numbers.

#include<stdlib.h>

 int a,i,n;
 randomize(); /*initializes the random number generator
with a random number*/

 printf("enter the no. to be printed: ");
 scanf("%d",&n);
 i=1;
 while(i<=n)
 {
 a=random(100)+1; /*generates a number between 0 and 99*/
 printf("%d\n",a);
 i++;
 }

3. WAP to produce the following output:

a b c d e f g f e d c b a
a b c d e f f e d c b a
a b c d e e d c b a
a b c d d c b a
a b c c b a
a b b a
a a

int n,i,j,k,l;
printf("Enter the number of Rows: ");
scanf("%d",&n);
for(i=n;i>=1;i--)
{
for(j=1;j<=i;j++)
 printf("%c",j+97-1);
for(k=1;k<=2*(n-i)-1;k++)
 printf(" ");
for(l=i;l>=1;l--)
{
 if(l==n)

continue; /*passes the control of the loop directly
to the decrement statement*/

 printf("%c",l+97-1);

}
 printf("\n");
}

Drill Note-
In comments you can write whatever you want no matter its in upper case or

lower case or special character, you are free to write.

4. WAP to print the total no. of characters typed by the user. Input will be

terminated by enter key.
char ch;
int i=0;
printf("Enter a sentence: ");
while((ch=getche())!='\r') /*getche() is an input function */
{
 i++;
}
printf("\n%d",i);

5. WAP to reverse a number and find its octal equivalent.
#include<math.h>
main()
{
int n, rev, a, oct, cnt;
printf("\nEnter a number");
scanf("%d",&n); /*reverse the number*/
rev=0;
 while(n>0)
 {
 a=n%10;
 rev=rev*10+a;
 n=n/10;
 }
 n=rev;
 cnt=oct=0;
 /*converting to octal*/

while(n>0)
{
 a=n%8;
 n=n/8;
 oct=oct+a*pow(10,cnt);

 cnt++;
}
 printf("The octal equivalent of %d is %d",rev,oct);
}

Drill Note-

Once again I am telling you, for more programming examples according to
chapter topics please read last chapter of this book where I mentioned more than 200 C
Programs for your practice.

Odd loops –

1. for(i=1;i<=5;i--)
printf (“%d”,i);

Output:- 1,0,-1,-2……

2. for(i=1;i<=5;++i)

printf (“%d”,i);
Output:- 1,2,3,4,5

3. for(i=1;++i<=5;)

printf (“%d”,i);
Output:- 2,3,4,5

4. for(i=1;i++<=5;)

printf(“%d”,i);
Output:- 2,3,4,5,6
5. for(i=1;i<=5;printf(“%d”,i++));
Output:- 1,2,3,4,5

6. for(i=1;i<=5;printf(“%d”,++i));
Output:- 2,3,4,5,6

7. for(i=1;i=5;i++)

printf (“%d”,i);
Output:- 5,5,5,5…….

8. for(i=1;i=0;i++)

printf(“%d”,i);

12. for(i=1;i<=5;)
printf(“%d”,i++);

Output:- 1,2,3,4,5

13. for(i=1;5;i++)
printf(“%d”,i);

Output:- 1,2,3,4,5…………

14. for(i=1;i<=5;i++);
printf(“%d”,i);

Output:- 6
The loop does not have any
statement because of the presence
of the semicolon after increment.
Such loops are called as null
loops.

15. int i=1;
 for(;i<=5;i++)
 printf(“%d”,i);
Output:- 1,2,3,4,5

16. int i=1;
 while()
 {
 printf(“%d”,i);
 i++;

Output:- the condition will be
considered false because at the place
of condition there is an assignment of
0.

9. for(; ;)
Output:- a blank screen will be
generated.

10. for(i=1;i++<=5;i++)

printf(“%d”,--i);
Output:- 1,2,3,4,5

11. for(i=1;i= =5;i++)

printf(“%d”,i);
Output:- No output will be generated because
the condition is checking if the value of i is 5
which is false in the beginning.

 }
Output:- Error as condition is
missing and this is not allowed in
while loop.

17. int i=1;
 while(i<=5)
 printf(“%d”,i++);
Output:- 1,2,3,4,5

18. for(i=1;i<4;i++)

printf(“%d”,(i%2)?
i:2*i);
Output:- 1,4,3,8,5

Common programming Errors -

1. While statement does not include the word do. Thus it is not logical to write
–

while(condition) do
{

 statement;
}

2. The break and continue statements affect only the innermost loops.e.g.

 for(………….) /*loop 1*/
 {
 for(……………..) /*loop2*/
 {
 ………….
 ………….
 break;
 ………….
 ………….
 }

………….
 }

The break statement would cause the exit from loop 2 but not from loop 1.

What would be the output of the following programs.

1. int i =1;
while(i<= 10);
{
 printf(“ \n%d”,i);
 i++;
}

Output:- No output because a
infinite loop.

In the above program a “;” is
encounter after the while so it is
understand as following by the
compiler
while(i<=10)
{
 ;
}
clearly in the body of loop there is
no increment and only null statement
so condition still remains true that

10. int a =4, b =0, c;
while(a>=0)
{
 a--;
 b++;
 if(a = =b)
 continue;
 else
 printf(“\n %d
%d”,a,b);
}
Output:- 3 1
 1 3
 0 4
 -1 5
In the above program first a = 4,b = 0
and when condition checked it
becomes true and control execute the
body of loop and a is decrease by 1
and b i increase by 1. so a = 3 and b
= 1 now again condition is checked a

cause an indefinite loop and because
of null statement no output is
generated.

2. char ch;
while(ch =0; ch<=255;ch++)
 printf(“\n %d-%c”,ch,ch);

Output:- Error.

In the above program “while” loop is
used in the place of “for” that cause
generate an error because of different
syntax.

3. int a =4;
while(a = =1)
{
 a = a-1;
 printf(“%d”,a);
 --a;
}

Output:- No output

Because condition is false for the
first time and control immediately
comes out from the body of loop
without execute anything.

4. int a =4,b,c;
b = --a;
c = a--;
printf(“\n%d %d %d”,a,b,c);

Output:- 2 3 3

In the above program a = 4 now we
understand the pre and post
increment/decrement.

= = b that is false and control jumps
to the else block and print the value
of a and b that is 3 and 1 respectively
now when control reach to the end
of the loop again jumps to the
condition now again condition
remains true and again body of loop
executed resultant a = 2 and b = 2
and when condition a = = b is
checked it becomes true that continue
the loop using “continue” statement
and control jumps to the loop
condition that is true because a = 2
that is greater then 0.again body of
loop executed and a =1,b = 3 and
gets printed because the condition in
if is false and from the end of the
loop control jump to the condition
that is true and a =0 and b =4 that is
not equal so printed out and
repeatedly when condition is
checked it is true and execute a = -1
and b = 5 that is not equal and gets
printed through else block and this
time when condition is checked
becomes false because a = -1 that is
not greater or equal to 0 and jumps
out of the loop.

11. int a = 4, b = 0,c;
while(a>=0)
{
 if(a = =b)
 break;
 else
 printf(“\n%d
%d”,a,b);
 a--;
 b++;
}

b = --a � (1) a = a-1[� (a =3);] (2)
b=a � [(b =3)]; i.e. In prefix
decrement first decrease and then
assign.

c=a-- � (1) c = a [c = 3]; (2) a = a-
1[a = 2]; i.e. In postfix decrement
first assign and then decrease.
so finally a = 2, b = 3, c = 3 and gets
printed through printf().

5. int a =4,b =3,c;
c = a-- -b;
printf(“\n%d%d%d”,a,b,c);

Output:- 3 3 1

Here at first a = 4; and in the exp. c =
a-- -b; postfix decrement op. is used
with a means first a is use in exp and
then decrease i.e. � (1) c = a-b;[c =
4-3] � [c = 1] (2) a = a-1;[a = 4-
1] � [3] and b still remain same so
finally a = 3, b = 3, c = 1 and gets
printed through printf().

6. while(‘a’<’b’)
printf(“\n malyalam is a
palindrome”);

Output:- “malyalam is a
palindrome” printed indefinitely.

Because condition ‘a’<’b’ never
becomes false and every time it
execute the body of loop that print
the above massage “malyalam is a
palindrome”.

7. int i;

Output:- 4 0
 3 1
Here a = 4 and b = 0 and when
condition in loop is checked it
becomes true and then control jumps
to the else block because a!=b and
gets printed the value of a and b that
is 4 and 0 respectively. and then a is
decreased by 1 and b is increased by
1 so a = 3 and b = 1.Again when
repeatedly when loop condition is
checked it becomes true and control
executes the body of loop and control
print out the value of a and b that is 3
and 1 from the else block because
condition becomes false and now a =
2 and b = 2 and loop condition will
be again true and when comparison
a = = b gives true control execute the
if block and jumps out of the loop
because of “break” statement.

12. int i;
for(i = 1;i<=5;printf(“\n%d”,i));
 i++;
Output:- 1 will printed indefinitely
no. of times.

Here “;” is used after the loop means
loop contain NULL statement and
i++ is not in the body of the loop
because no braces is used. In first i
is initialize with 1 and when
condition is checked it becomes true
and gets printed i that is 1 now no
increment take place and whenever
condition is checked it always
becomes true and indefinitely print 1.

13. int i = 1,j = 1;

while(i =15)
{
 printf(“\n%d”,i);
 i++;
}
Output:- print 15 indefinitely.

Because in the statement while(i =
15), i is not compared with 15. Here
i is assigned with 15 that is a non
zero value so each time when
condition is checked i becomes 15
and condition becomes true and
execute the body of loop that first
print the value of i means 15 and then
increment by 1 and i becomes 16 but
again when condition check is
encountered then again i becomes 15
and again execute the body of loop as
same as previous that cause 15
printed indefinitely.

8. float a = 1.1;
while(a = =1.1)
{
 printf(“\n%d”,x);
 x=x-0.1;
}

Output:- No output

Because in the condition a float
variable is compared with double
value and control jumps out of the
loop.

Drill Note: whenever we use
floating point constant it is consider
a double type value.

for(; ;)
{
 if(i>5)
 break;
 else
 j+=i;
 printf(“%d\t”,j);
 i+=j;
}
Output:- 2 5

In this program in first i = 1 and j =
1; And whenever there is no
condition in the for loop by default it
is assume true and execute the body
and when i>5 is executed control
jumps to the else block because
condition is false and then j+=i [j =
j+i] that gives j =2 and than j is
printed through printf(). Now next
statement i+=j gives i =3 and from
the ending braces of loop control
jumps to the loop and check for the
condition that is true because missing
and again i>5 is checked that
becomes false and control execute
the else block that cause j =5 (3 + 2)
and gets printed now i will be 8 and
now when the next time i>5
condition is checked it will be true
and control jumps out of the loop
because of the “break” statement.

Lab Exercise -

Print the n terms of the following series.

1. 1, 3, 5, 7, 9,

2. 2, 4, 6, 8, 10,

3. 1, 4, 9, 16, 25,

4. 1, 8, 27, 64, 125,

5. 1, -1, 1, -1, 1,

6. 1, 1, 2, 4, 7, 13, 24, ... (Lucas series)

7. 1 + x2/2! + x3/3! + x4/4! + x5/5! (ex)

8. x - x3/3! + x5/5! - x7/7! + x9/9! (sinx)

9. 1 - x2/2! + x4/4! - x6/6! + x8/8! (cosx)

10. x - x2/2 + x3/3 - x4/4 + x5/5 (log(1+x))

11. WAP to print the table of n.

12. WAP to calculate the factorial of n.

13. WAP to calculate the power p of a number n.

WAP to print the following-

16. 1
 21
 321
 4321
 54321

17. 12345
 1234
 123
 12
 1

18. 54321
 4321
 321
 21
 1

19. 1
 22
 333
 4444
 55555
20. *
 **

25. 1
 121
 12321
 1234321
 123454321

26. 123454321
 1234321
 12321
 121
 1

27. *

 *

28. **********
 * *
 * *

29. 4
 434
 43234

21. 1
 123
 12345
 1234567
 123456789

22. 987654321
 7654321
 54321
 321
 1
23. 1
 12
 123
 1234
 12345

 4321234
 43234
 434
 4

30. 1
 232
 34543
 4567654
 567898765

 67890109876

31. a
 aba
 abcba
 abcdcba

 abcdedcba
32. WAP to find the average of the values read from the input. The
sequence of values in the input is terminated by -1.

33. WAP to find the maximum, second maximum, position of maximum
and position of second maximum from the sequence of n numbers.

34. WAP to print all the ASCII values and their equivalent characters
using a while loop. The ASCII values vary from 0 to 255.

35. WAP to print out all Armstrong numbers between 1 and 500. If sum of
cubes of each digit of the number is equal to the number itself, then the number is
called an Armstrong number. For example,

153=(1*1*1)+(5*5*5)+(3*3*3).if the number is in two digits then we square
the digit of the number.

36. WAP to print all prime numbers from 1 to 300.

37. WAP to fill the entire screen with a smiling face. The smiling face has
an ASCII value 1.

38. WAP to add first seven terms of the following series using for loop:

 1/1!+2/2!+3/3!+......

39. WAP a program to generate all combinations of 1, 2 and 3 using for
 loop.

40. According to a study, the approximate level of intelligence of a
person can be calculated using the following formula:

 i=2+(y+0.5 x)
WAP, which will produce a table of values of i, y and x, where y varies from 1
to 6 , and for each value of y, x varies from 5.5 to 12.5 in steps of 0.5.

41. WAP to print all the prime numbers between two given numbers.

42. WAP to count the number of digits in a given number.

43. WAP to print the sum of all the digits of a given number.

44. WAP to check whether a given number is palindrome or not.

45. WAP to count all the vowels, consonants, digits, spaces, special
symbols from a given text typed by the user, terminated by the enter key.
46. WAP to find the sum of first n prime numbers.

47. WAP to determine whether a specified value is prime or not in a
given sequence of values. The sequence of values to be read from the input is
terminated by 0.

48. Print the sum of following series.
 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + + (n-1) x n.
49. Print the sum of following series.

50. e-x 1 - x + x2/2! - x3/3! + x4/4!

51. WAP to read n numbers and count even and odd numbers.

 1+1/2+1/3+1/4......+1/n

52. WAP to compute the volume (4/3pir^3) and surface area (4pir^2) of a

sphere of any radius r.

53. WAP to compute the perimeter p and area a of a triangle of sides a, b
and c where

 p = a+b+c
 a = sqrt(s(s-a)(s-b)(s-c))
 and 2s = a + b+ c

54. WAP to read a positive integer and determine and print its binary
 equivalent.

55. WAP to print the sum of n numbers , sum of squares of first n even
numbers and sum of the cube of first n odd numbers.

56. WAP to calculate net pay of n employees. Net pay is basic + da + hra
cca - pf (da is 39% of the basic, hra is 15% of basic less than or equal to rs
8000/- and 30% of the basic above rs 8000, cca is fixed

 to rs 800 and pf deduction is rs 600).

57. Write a program to calculate overtime pay of 10 employees. Overtime
is paid at the rate of rs. 12.00 per hour for every hour worked above 40 hours.
Assume that employees do not work for fractional part of an hour.

58. While purchasing certain items, a discount of 10% is offered if the
quantity purchased is more than 1000.if quantity and price per item are input
through the keyboard, write a program to calculate the total expenses.

59. WAP to check whether a given sequence of values is sorted in
increasing order. The sentinel value for the sequence is -1.

60. WAP to find the sum and average of values appearing at the positions
divisible by 3 in the given sequence of n values.

61. WAP to input the marks of n students and count the number of students
who have obtained a, b, c,d and f grades. The grades are awarded according to
the following rules.

 Marks Grade

>= 80 A
>= 70 B

>= 60 C
>= 50 D
< 50 F

CHAPTER
∞ 5 ∞

(One Dimensional Array)

Introduction-

ARRAY –

Array is a collection of similar data items or elements. Or we can say that
array is a collection of homogeneous data elements stored continuously under a single
name.

Need for an array –

When the number of variables of same type and nature are more then it is
difficult to handle them. So we need an array. Let us understand the use of array with an
example:

 int i,a;
 for(i=1;i<=5;i++)
 {
 printf(“Enter the no.”);
 scanf(“%d”,&a);
 }

In the above program as soon as the new value is assigned to the variable a the
old value is lost.

Thus all the variables that we have used so far are not able to hold more than

one value at a time. But sometimes we wish to store more than one value for a variable.
For example if we wish to arrange the marks of 10 students in ascending order.

There are two ways for it:

(i) Use of 10 different variables so that each variable can store

marks of a single student.

(ii) Use a single variable which can store the marks of all
students.

Obviously the second option looks better because it is easier to handle them. A

single variable which can store more than one value at a time is called an Array.

Drill Note-

It is a collection of homogeneous data elements stored continuously under a
single name. Array declaration:-

int a[6];

Here a is the name of the array, int is the data type of values which the array
will store, 6 is the size of array and [] are called as subscript operator. The size of
array must be a constant. The most important thing is that all the values in the array
should be of the same type.

10, 20, 30, 40, 50 are the elements of the array. To use the elements of the

array we refer to the index. The array index starts from 0 i.e. if the size of the array is 6,
so the indices of the array will be from 0 to 5.

In the definition we also said that the elements of the array are stored

continuously, i.e. if the element at 0 index has address 100 then the next elements will
have addresses 102, 104, 106, 108, 110 if the array is an integer array because an
integer occupies only 2 bytes. But if it was a float array the addresses will have been
100, 104, 108, 112, 116, 120 since a float number occupies 4 bytes.

If there are more than one array of the same size are to be used in a program

then another type of declaration can be used.
For Example,

If the percentage of the students of a class is to be calculated and the marks of
all the students is input in arrays. Then all the arrays should be of same size.

So this type of declaration can be used:

#define SIZE 10
main()
{

 int maths[SIZE], hindi[SIZE],english[SIZE];
 }

Drill Note- Here SIZE is a global or symbolic constant.

Array Initialize:

int a[5]; /*This array will contain garbage values*/

int a[5]={10,20,30,40,50}; /*This array will contain 10,20,30,40,50 values*/

int a[5] = {0,0,0,0,0}; /*This array will contain 0,0,0,0,0 values*/

int a[5] = {0}; /*This array will contain 0,0,0,0,0 values*/

int a[5] = {1}; /*This array will contain 1,0,0,0,0 values*/

int a[5] ={10, , 30}; /*This array will contain 10,0,30,0,0 values*/

int a[] = {10,20,30}; /*The size of this array will be assumed as 3*/

int a[3] = {10,20,30,40}; /*Too many initializes error.*/

static int a[5]; /*This array will contain 0,0,0,0,0 values*/

Drill Note –

If the size of the array is missing but the values are given then the size of the
array formed will be equal to the number of initializes.

Drill Note –

If the number of initializes is more than the size of the array then the error of
too many initializes is given.

Limitations of array -
-

1. The array formed will be homogeneous. That is in an integer array only
integer values can be stored, while in a float array only floating values and
character array can have only characters. Thus no array can have values
of two data types.

2. While declaring the array passing size of the array is compulsory, and the
size must be a constant. Thus there is either shortage or wastage of
memory.

3. Insertion or deletion of elements in an array will require shifting.

4. The array does not check its boundaries: In C there is no check to see if

the values entered in the array are exceeding the size of the array. Data
entered with the subscript exceeding the array size will be simply placed
outside the array, probably on the top of the data or the program itself.

This will lead to unpredictable results, to say the least, and there will
be no error message to warn the programmer of going beyond the array size. In
some cases the program may hang. Thus the following program can give
undesired result:

int a[10],i;

 for(i=0;i<=20;i++)
 a[i]=i;

SOME SOLVED PROGRAMS-

1. Write a program to print the average of n numbers.

 int a[50],n,i,sum=0;
 float avg;
 printf(“Enter the number of elements in the array: “);
 scanf(“%d”,&n); /*input & sum of array*/

for(i=0;i<n;i++) /*the first element in the array is
numbered as 0, so the last element is one less than the size
of the array*/

 {

 printf(“Enter number %d”,i+1);
 scanf(“%d”,&a[i]);
 sum + = a[i];

}
avg=(float)sum/n; /*typecasting sum from interger to float*/
printf(“average = %f”,avg);

2. WAP to insert an element in 1-d array(unsorted) at the given position.

#define SIZE 20
main()
{

 int n,i,a[SIZE],item,pos;
 printf("enter the no. of elements in the array: ");
 scanf("%d",&n); /*Input in
array*/
 for(i=0;i<n;i++)
 {
 printf("Enter the element %d: ",i+1);
 scanf("%d",&a[i]);
 }
 printf("Enter the item and its position of insertion: ");
 scanf("%d %d",&item,&pos);
 pos--; /*Array index starts from 0*/
 for(i=n-1;i>=pos;i--)
 a[i+1]=a[i]; /*insertion*/
 a[pos]=item; /*Output*/
 for(i=0;i<n+1;i++)
 printf("\n%d",a[i]);
}

3. WAP that will read an array of integers. The program should display

the elements appearing at even and odd subscript position separately.
 int even,odd,i,n,a[50];
 printf("Enter the number of terms: ");
 scanf("%d",&n);
 /*input*/
 for(i=0;i<n;i++)
 {
 printf("Enter number %d: ",i+1);

 scanf("%d",&a[i]);
 }
 printf("\nOdd\tEven\n");
 for(i=0;i<n;i++)
 {
 if(i%2==0) /*array index starts from 0*/
 printf("\n%d\t",a[i]);
 else
 printf("%d\t",a[i]);
 }
4. WAP that reads a float array and reverse this array.

 float a[10];
 int n,i;
 printf("Enter the number of terms: ");
 scanf("%d",&n);
 /*input*/
 for(i=0;i<n;i++)
 {
 printf("Enter the number %d",i);
 scanf("%f",&a[i]);
 }
 for(i=n-1;i>=0;i--)
 {

printf("%.2f, ",a[i]);
5. Some repeated random numbers are given, write a program to print

them in increasing order with their frequency.
#define SIZE 100
main()
{

 int a[SIZE],b[SIZE],freq[SIZE],i,j,k,n,found,t;
 printf("Enter how many numbers");
 scanf("%d",&n);
 /*input array*/
 for(i=0;i<n;i++)
 {
 printf("enter element %d ",i+1);
 scanf("%d",&a[i]);
 }
 for(i=0,k=0;i<n;i++)

 {
 found = 0;
 for(j=0;j<k;j++)
 {
 if(a[i] == b[j])
 {
 freq[j]++;
 found = 1;
 break;
 }
 }
 if(found == 0)
 {
 b[k] = a[i];
 freq[k++] = 1;
 }
 }
 for(i=0;i<k-1;i++)
 for(j=i+1;j<k;j++)
 if(freq[i] < freq[j])
 {
 t = b[i];
 b[i] = b[j];
 b[j] = t;
 t = freq[i];
 freq[i] = freq[j];
 freq[j] = t;
 }
 for(i=0;i<k;i++)
 printf("%d\t%d\n",b[i],freq[i]);
}

6. WAP to merge two array a and b into third array c.
#define SIZE 20
main()
{

 int n1,n2,i,j,k,a[SIZE],b[SIZE],c[SIZE];
 /*input in first array*/
 printf("Enter the no. of elements in the first array: ");
 scanf("%d",&n1);

 for(i=0;i<n1;i++)
 {
 printf("Enter the element %d: ",i+1);
 scanf("%d",&a[i]);
 }

 /*input in second array*/

 printf("\nEnter the no. of elements in the second array: ");
 scanf("%d",&n2);
 for(i=0;i<n2;i++)

 {
 printf("Enter the element %d: ",i+1);
 scanf("%d",&b[i]);
 }

 /*merge*/

 for(i=0,j=0,k=0;i<n1&&j<n2;k++)
 {
 if(a[i]<b[j])
 c[k]=a[i++];
 else
 c[k]=b[j++];
 }

 /*remaining of first list*/

 while(i<n1)
 c[k++]=a[i++];

/*remaining of second list*/

 while(j<n2)
 c[k++]=b[j++];

/*output*/
 for(i=0;i<(n1+n2);i++)
 printf("%d\n",c[i]);
}

7. WAP to find the kth smallest number from a given list of numbers:

 int a[20], i, j, n,t,k;
printf(“Enter the number of elements in the list: ”);
scanf(“%d”,&n);

/*input in the array*/

for (i=0;i<n;i++)
{
 printf(“Enter the number %d: ”i+1);
 scanf(“%d”,&a[i]);

 }

/* loop to sort the array*/

for(i=0;i<n-1;i++)
{
 for(j=i+1;j<n;j++)
 {
 if(a[i]>a[j])

{
 t=a[i];
 a[i] = a[j];
 a[j]=t;

 }
 }
 }
 printf(“Enter the position of element:”);
 scanf(“%d”,&k);
 printf(“the %d smallest element of the list is %d”,k, a[k-1]);

What would be the output of the following programs?

1. int num[26],temp;
num[0] = 100;
num[25] = 200;
temp = num[25];
num[25] = num[0];
num[0] = temp;
printf(“\n%d %d”,num[0],num[25]);

5. int b[] = {10,20,30,40,50};
int i, *k;
k = b;
for (i = 0; i<= 4; i++)
{
 printf(“%d ”,*k);
 k++;

Output: 200 100

Here in first two statements after
declaration the first and last element
is assigned with 100 and 200
respectively and the in next three
statements swap both of them. So
num[0] = 200 and num[25] = 100.

2. int array[26],i;
for (i = 0; i<=25;i++)
{
 array[i] = ‘A’ + i;
printf(“\n%d %c”,array[i], array[i]);
}
Output: 65 A
 66 B

 90 Z
In the above program first time array
of i will be 65 because i =0 and ‘A’
gives 65 so array[0] = 65 that gets
printed through printf() in integer
and character format. And each time
when i increment by 1 the array will
contain 66,67,68 on successive
position and will print through printf(
) in integer and character format.

3. int sub[50],i;
for(i = 0; i <= 48; i++);
{
 sub[i] = i;
 printf(“\n%d”,sub[i]);
}
Output: 49
Because of “;”(Null statement) the
loop will execute till 48 without
executing any statement and when i’s

}
Output:- 10 20 30 40 50
In the above program the base
address of b is assign to the k through
k = b statement. Because when we
use the name of array it tells the base
address of array. And loop runs 5
times in the above program and each
time k deference the respective
element and print it. And we know
when pointer is incremented it moves
the required bytes(in the above
program moves 2 byte because it
points to int array) and point the next
element. Here first time k contains 0th

element address and print it by
deference and by increment it points
to next element and because loop
runs 5 times so five times pointer
incremented and point the value
starting from base address so it print
all the array element.
6. main()
 {
 int a [] = {2,6,4,8,10};
 int i;
 change(a, 5);
 for(i = 0;i<= 4;i++)
 printf(“%d ”,a[i]);
 }
 change(int *b, int n)
 {
 int i;
 for(i = 0;i <n;i++)
 *(b+i) = *(b+i)+5;
 }
Output:- 7 11 9 13 15
Here pointer b receive the base
address of a and 5 is passed to n. and
in the change() each time b[i] is

value will be 49 the condition
becomes false and control jumps out
of the loop and execute the next
statement that will sub[i] =
i � sub[i] � 49. and the value of
sub[i] gets printed through printf()
that is 49.

4.int b[] = {10,20,30,40,50};
int i;
for (i = 0; i<=4; i++)
 printf(“%d ”,*(b+i))

Output:- 10 20 30 40 50

Compiler understand *(b + i) as b[i].
In the above program i vary from 0 to
4 and through printf() value of b[i]
gets printed each time that will 10 20
30 40 50 successively.

7. static int a[5];
int i;
for(i = 0; i<=4; i++)
 printf(“%d ”,a[i]);

Output:- 0 0 0 0 0
Because here array’s storage class is
static and in static array all the
elements will assigned with 0 and
when we print the array 5 times 0
will gets printed.

replaced by b[i] +5. and loop will
runs form 0 to 5. so firstly b[0] =
b[0] + 5(2+5 � 7) and similarly the
next four element are changed and the
value will be in array b 7 11 9 13 15
and gets printed in main().

8. int a[5] = {5,1,15,20,25};
int i,j,k = 1,m;
i = ++a[1];
j = a[1]++;
m = a[i++];
printf(“\n%d %d %d”,i,j,m);
Output:- 3 2 15

Here in the third statement i =
++a[1]. Here we know the index of
array is start from 0 so a[1] = 1. now
in the above statement prefixed
increment op. is used so the value of
a[1] is increment first and will be 2
and then assign so i will be 2 so a[1]
= 2 and i = 2. Again in the next
statement j = a[1]++ postfix
increment op. is used so first the
value of a[1] is assign j so j will be
2 and then increment so a[1] = 3.
now in the next statement m = a[i++].
First a[i] is assigned in m because i
= 2 so a[i] (a[2]) = 15 and assigned
in m and then i is incremented and
becomes 3. so finally i = 3 j = 2 and
m = 15.

Point out the errors, if any, in the following program segments:

1. int char mixed[10],i;
 for(i = 0; i< 10; i++)
 {

scanf(“%d”,&mixed[i]);
 }
 Output:- Error.
Because mixed datatype cannot be
used.

2. int SIZE;
 scanf(“%d”,&SIZE);
 int a[SIZE];
 for(i = 1; i<=SIZE ;i++)
 {
 scanf(“%d”,a[i]);
 printf(“%d”,a[i]);
 }
 Output: Error.
Because the size of array must be
constant but, here SIZE is a variable
that is used as size of array.

3. main()
{
 int i, a = 2, b = 3;
 int a[2+3];
 for(i = 0; i< a+b;
i++)
 {

scanf(“%d”,&a[i]);

6. main()
 {
 int a[6] =
{10,20,30,40,50};
 int i;
 for(i = 0;
i<=25; i++)

printf(“\n%d”,a[i]);
 }
Output: No error.
Because if we cross the bounds of
the array the garbage stored in the
next position in memory will be
displayed. But a warning will be
display “array bounds are being
exceed.”

7. main()
 {
 int s[50];
 for(i = 1; i<=50;
i++)
 {
 s[i] =
i;

printf(“\n%d”,s[i]);
 }
 }
Output: No Error.
Here array size is 50 and because
array index is start from 0 the last

printf(“\n%d”,a[i]);
 }
 }
Output: No error.

4. Assume that array begins at 1200

main()
{
int a[]= {2, 3, 4, 1, 6};

printf(“%d %d”, a, sizeof(a));
}

Output:1200 10

5. Assume that the array begins
at 65486?
main()
{
 int a[]= {12, 14, 15, 23,
45};
 printf(“%u %u”, a+1,
&a+1);
}
Output:65488 65496

index will be 49 but in this program
array is access from 1to 50. So same
as the previous program no error
will encounter but a warning will
display “array bounds are being
exceed.”

8. Assume that the array begins at
65486?

main()
{
int a[]= {12, 14, 15, 23, 45};
printf(“%u %u”, a, &a);
}

Output:65486 65486

main()
{
float a[]= {12.4, 2.3, 4.5, 6.7};
 printf(“%d”,
sizeof(a)/sizeof(a[0]);
}

Output: 4

Multiple choice.

1. An array is a collection of –

a) Different data types
scattered
 throughout memory.
b) The same data type scattered
 throughout memory.
c) The same data type placed next
 to each other in memory.
d) Different data types placed next

7. What would happen if you
assign
 a value to an element of an
array
 whose subscript exceeds the
 size of the array?
a) The element will be set to 0
b) Nothing, it’s done all the time.
c) Other data may be overwritten
d) Error message from the

 to each other in memory.

Output: c) The same data type placed
next to each other in memory

2. Which element of the array does
this expression reference?
num[4]
 a) first element .
 b) last element.
 c) fourth element.
 d) Fifth element.

Output: d) Fifth element

3. What is the difference between the
5’s in these two exepressions?
 int num[5];
 num[5] = 11;
a) First is particular element,
 second is type.
b) First is array size, second is
 particular element.
c) First is particular
element,
 second is array size.
d) Both specify array size.

Output: b) First is array size, second is
particular element.

4. Are the following array
declarations correct?
 a) int a(25);
 b) int size = 10, b[size];
 c) int c = {0,1,2};

Output: all are wrong.

 compiler.

Output: c) Other data may be
overwritten

8. When you pass an array as
an
 argument to a function, what
 actually gets passed?
a) Address of the array.
b) Values of the elements of the
array.
c) Address of the first element of
the
 array.
d) Number of elements of the
array.
Output: a) Address of the array.

9. Which of these are reasons
for
 using pointers?
a) To manipulate parts of an array
b) To refer to
keywords
 such as for and if
c) To return more than one value
from a
 function
d) To refer to particular
programs more
 conveniently
Output: a) c)
10. If you don’t initialize a static
array,
 what would be the elements
set
 to?
a) 0

In (a) these brackets”()” are not
allowed in array dimension.

In (b) array size is variable.

In (c) a simple integer variable is
assigned with three value that is only
possible in array variable.

5. What would happen if you try to put
so many values into an array when you
initialize it that the size of the array is
exceeded?

a) Nothing
b) Possible system malfunction
c) Error message from the compiler
d) Other data may be overwritten
Output: b) Possible system malfunction

6. What would happen if you put too
few elements in an array when you
initialize it?
a) Nothing
b) Possible system malfunction
c) Error message from the compiler
d) Unused elements will be filled
 with 0’s or garbage
Output: d) Unused elements will be
filled with 0’s or garbage

b) An undetermined value
c) A floating point number
d) The character constant’\0’

Output: a)

11. main()

{
 int a[5]={2,3};
 printf(“%d
%d”,a[2],a[3],a[4]);
}

1. garbage value
2. 2 3 3
3. 3 2 2
4. 0 0 0

Output: 0 0 0

Explanation: when an array is
partially initialized, the remaining
array elements are initialized to
0.

State wheather the following statements are True or False:

1. The array int num[26] has twenty-six elements.
2. The expression num[1] designates the first element in the array.
3. It is necessary to initialize the array at the time of declaration
4. The expression num[27] designates the twenty-eighth element in the array.
5. Address of a floating-point variable is always a whole number.

Answers:

1. False 2. False 3. False 4. True
 5. True

1. If a[i]=i++ is undefined, then by the same reson i=i+1 should also be

undefined. But it is not so. Why?

Answer: If an object is to be modified within an expression then all accesses
to it within the same expression must be for computing the value to be stored in
the object. The expression a[i]=i++ is disallowed because one of the accesses
of i (the one in a[i]) has nothing to do with the value that ends up being stored
in i.

In this case the compiler may not know whether the access should take place
before or after the incremented value is stored.

The expression i=i+1 is allowed because I is accessed to determine i’s final
value.

2. Does mentioning the array name gives the base address in all context?

Answer: No, it is said that the array name has its base address in it. But the
array does not give its base address in two situations:

1. When array name is used with sizeof operator.
2. When the array name is an operand of the & operator.

3. Are the expressions a and &a for an array of 10 integers?

Answer: No, Even though both the expressions give the same result in the
above question they mean two different things. a gives the address of the first
int, whereas &a gives the address of array of ints. Since these happen to be
same the results of the expressions are same.

Lab Exercise – WAP- Write a Program.

1. WAP to sort a 1-d array using bubble sort technique.

2. WAP to sort a 1-d array using selection sort or linear sort technique.

3. WAP to sort a 1-d array using insertion sort technique.

4. WAP to search an element in 1-d array using linear search method.

5. WAP to search an element in 1-d array using binary search method.

6. WAP to insert an element in 1-d sorted array.

7. WAP to delete an element from 1-d array(unsorted) from the given

positions.

8. WAP to delete an element from 1-d sorted array.

9. WAP that will read an array of integers and print even and odd element
separately.

10. WAP to find sum of element appearing at even and odd subscript position

of an array of integers.

11. WAP to find maximum and the minimum values from a set of values stored
in an array, along with their positions in the array.

12. WAP to read 6 digits and find out if they are in a strictly ascending order.
For example, the sequence 5,6,7,9,11,14 is in strict ascending order
whereas the sequence 5,5,6,7,9,11 is not in a strict ascending order.
Display an appropriate message.

13. WAP to read a set of height and find out the average height. The

program should then calculate the deviation of each height from the
average. The deviation d, is defined as: d=m(i)-a. Where a represents
the average height, and m(i) represents the height.

14. WAP that will read 10 integers into an array and then display their
averages.

15. WAP that will display the maximum and it position in an array of integers.

If the maximum occurs more than once its last position should be displayed.

16. WAP that will display the max and min and their respective positions in an

array. If the max and min occurs more than once their first position should
be displayed.

17. WAP that will read roll no. And marks of 10 students in two different
arrays. Program will print the marks of students whose roll no. Is provided
by user.

18. WAP that will read 2 array, sum their individual element in third array and
display the third array.

19. WAP that will read an array of integers. after reading array, the program
should check if there any duplicate value in the array. The program should
display the appropriate message.

20. WAP that will read 2 arrays. Sum individual elements of both arrays in
reverse order and stores it in third array. Display the third array.

21. WAP that will read an array and insert an integer at the end of array.

22. WAP to insert an integer at the beginning of an array.

23. WAP to insert an array at the end of another array.

24. WAP to insert an array at the beginning of another array.

25. WAP to insert an array into another array at a positions specified by user.

26. WAP to find whether a array is palindrome or not.

27. WAP to send all the negative elements of an array to the end without
altering the original sequence. for e.g. If array contains 5 -3 2 6 8 -4 7 -6 9
-1 then the resultant array should be 5 2 6 8 7 9 -3 -4 -6 -1 .you may use
two arrays.

28. WAP to delete an array element present at the beginning.

29. WAP to left rotate an array by one element.

30. WAP to right rotate an array by one element.

31. WAP to left rotate an array by n elements, where value of n will be
provided by user.

32. WAP to right rotate an array by n elements, where value of n will be

provided by user.

33. WAP that will read an array, replaces multiple occurrence of any element
by 0 and then display the resultant array. For eg. If input is 1 1 2 2 3 4 2 1 5
4 output is 1 0 2 0 3 4 0 0 5 0 .

34. WAP to shift multiple occurrence of element in the following manner. for

eg. If input is 1 1 2 2 3 4 2 1 5 4 output is 1 2 3 4 5 0 0 0 0 0 .

35. WAP to delete the multiple occurrence of elements in an array.

36. WAP to replace any nth element of an array at the first position, the
(n+1)th element at second position etc.

37. WAP to rearrange k th elements of an array so as to replace the elements
at the odd suffixes with the elements at even suffixes. for eg, 1 2 3 4 5 6 7
8 should be changed to as: 1 3 5 7 2 4 6 8

38. WAP to sort an array in descending order.

39. WAP to store any ten numbers in an array and print the LCM and HCF of
all the numbers.

40. WAP to store any ten numbers in an array number and print the smallest,
The largest and the average.

41. WAP to store any 100 numbers in an array. Arrange the first fifty numbers
in ascending order and last fifty numbers in descending order and print the
sorted array.

42. WAP which accepts a positive decimal integers input from the keyboard
converts the integer into its binary equivalent and outputs the integer with
its binary equivalent.

43. WAP to create a matrix age[20] to store any twenty ages and print the

sum of all even and odd ages respectively.

44. 25 numbers are entered from the keyboard into an array. WAP to find out
how many of them are positive, how many are negative , how many are
even and how many are odd.

CHAPTER
∞ 6 ∞

(Two Dimensional Array (Matrix))

Introduction-

Two dimensional array is popularly known as tables or matrix and can be
easily visualized as having rows and columns. Matrix can also be thought of as arrays of
arrays.

To create a two dimensional array, specifying both dimensions i.e. rows and
columns in square brackets.

For e.g. the following declaration creates a matrix of 4 rows and 5 columns.

 int mat[4][5];

or
#define MAXROW 4

 #define MAXCOL 5
int mat[MAXROW][MAXCOL];

 0 1 2 3 4
0 0,0 0,1 0,2 0,3 0,4
1 1,0 1,1 1,2 1,3 1,4
2 2,0 2,1 2,2 2,3 2,4
3 3,0 3,1 3,2 3,3 3,4

 0 1 2 3
0 10 5 6 7
1 36 94 56 29
2 83 67 12 69
3 39 55 13 29

Array are stored in row order, thus the expression mat[0] represents the first

row of 5 values, mat[1]represents second row, mat[2]represents third row, and so on.

Similarly the expression mat[0][0] refers to the upper left value in the matrix,

mat[2][3] represents the fourth value in third row.

Matrix initializes:-

1. int mat[4][3];
2. int mat[4][3]={{10,20,30,40},{50,60,70,80},{90,100,110,120}};

3. int mat[4][3]={10,20,30,40,50,60,70,80,90,100,110,120};
4. static int mat[4][3];

Drill Note - int mat[][] is invalid because dimensions are not specified.

Drill Note - int mat[][]={1,2,3,4,5,6} is invalid because it is not possible to decide
the row & column of the matrix.

Drill Note - int mat[][3]={1,2,3,4,5,6} is valid

Drill Note - int mat[2][]={1,2,3,4,5,6} is invalid as column is compulsory in matrix
declaration.

Memory map of a multi dimensional array:

Let us see the arrangement of array elements in a two dimensional array

The array arrangement in the above figure is only conceptually true. This is because
memory doesn’t contain rows and columns.

In memory whether it is a one dimensional or a multi dimensional array the
array elements are stored in one continuous chain. The arrangement of array elements of
the given two dimensional array in memory is shown below:

[0]
[0]

[0]
[1]

[0]
[2]

[0]
[3]

[1]
[0]

[1]
[1]

[1]
[2]

[1]
[3]

[2]
[0]

[2]
[1]

[2]
[2]

[2]
[3]

[3]
[0]

[3]
[1]

10 5 6 7 36 94 56 29 83 67 12 69 86 39

100 102 104 106 108 110 112 114 116 118 120 122 124 126

SOME SOLVED PROGRAMS -

1. WAP to transpose a 2-d array.

#define maxrow 10
#define maxcol 10

main()
{
 int m[maxrow][maxcol],i,j,row,col;
 clrscr();
 printf("Enter number of rows and columns in the matrix: ");
 scanf("%d %d",&row,&col);
 for(i=0;i<row;i++)
 {
 for(j=0;j<col;j++)
 {
 printf("Enter element %d,%d: ",i+1,j+1);
 scanf("%d",&m[i][j]);
 }
 }
 /*To print the matrix as input by the user*/
 printf("Matrix input:\n\n");
 for(i=0;i<row;i++)
 {
 for(j=0;j<col;j++)
 printf("%d\t",m[i][j]);
 printf("\n");
 } /*transpose*/
 printf("\n\nTransposed matrix\n\n");
 for(i=0;i<col;i++)
 {
 for(j=0;j<row;j++)
 printf("%d\t",m[j][i]);
 printf("\n");
 }
 getch();
}

2. Input a 3 * 3 matrix using keyboard, write a program to convert it in to 4
*4 matrix by adding corresponding row and columns.

int mat1[3][3],mat2[4][4]={0},i,j; /* Input */

for(i=0;i<3;i++)
for(j=0;j<3;j++)

{
printf("Enter element [%d,%d] ",i+1,j+1);
scanf("%d",&mat1[i][j]);
}

/* Convert 3 * 3 matrix into 4 * 4 matrix */
for(i=0;i<3;i++)
for(j=0;j<3;j++)

{
 mat2[i][j] = mat1[i][j];
 mat2[i][3] += mat1[i][j];
 mat2[3][j] += mat1[i][j];
 mat2[3][3] += mat1[i][j];
}
 /* Output */
for(i=0;i<4;i++)
{
 for(j=0;j<4;j++)
 printf("%d\t",mat2[i][j]);
 printf("\n");
}

3. Write a program to find if a square matrix is symmetric.
 int m[10][10], i, j, r,c;
 printf(“Enter number of rows & columns of the Matrix:”);

scanf(“%d%d”,&r,&c);
if(r !=c)
{
 printf(“Symmetric matrix must be a square matrix”);
 getch();
 exit(1);

 } /*Matrix input*/
 for(i=0; i<r; i++)
 {
 for(j=0; j<c; j++)

 {
 printf(“Enter element %d,%d”,i+1,j+1);
 scanf(“%d”,&m[i][j]);
 }
 } /* Check for symmetry*/
 for(i=0; i<r; i++)
 {
 for(j=0; j<c; j++)
 {

if(m[i][j] != m[j][i])
{

 printf(“The matrix is not a symmetric”);
 getch();
 exit(0);
 }
 }

 printf(“The matrix is a symmetric”);
Lab Exercise -

1. WAP to find row sum and column sum of a matrix.

2. WAP to prepare a one-dimensional array a[n 2] from a 2 dimensional array

m[nxn] that will have all the elements of array m if they are stored in row-
major form and a one-dim array b[n2] in column-major form. for example
for the following array—

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

The resultant array a will be 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16,
and the resultant array b will be 1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

3. WAP that will read 2 matrices, add their individual elements and display
the resultant matrix.

4. WAP that will read 2 matrices, multiply the matrices and display the
resultant matrix.

5. WAP that will transpose a 2-d array but the array is stored as 1-d array.

6. WAP to create a square matrix and print the first and the second diagonal

elements on a clear screen. Also find the sum of all the elements lie on
either diagonal.

7. WAP to extract the maximum and the minimum elements from a matrix.

8. WAP to double all the elements of the matrix.

9. WAP to print all those elements of a matrix are not diagonal elements.

10. WAP to sort all the elements of a matrix.

11. WAP to obtain the determinant value of a matrix.

CHAPTER
∞ 7 ∞

(String (Character array))

Introduction-
A string is an array of characters. Any group of characters (except double

quotes) enclosed between double quotes is called a string constant.

A string is a one-dimensional array of characters terminated by null (\0).

For e.g.

char s[10] = {‘s’,’h’,’i’,’v’,’a’,’m’,’\0’};

S H I V A M \0 p o H

Each character in the array occupies one byte of memory and the last character
is always a ‘\0’. This ‘\0’ is called a null. It defines the end of the string. Because of the
presence of this character the various functions working on the string are able to know
the end of the string.

Thus it can be said that the input given to the string gets terminated at null’\0’.

And the remaining array contains garbage values.

Drill Note: the null ‘\0’ looks as if two characters are typed but the compiler treats it as
a single character. It is an escape sequence.

Also remember that ‘0’ is different from ‘\0’. ASCII of 0 is 48 while ASCII of
‘\0’ is 0.
Character array initialization -

1. char s[10];
2. char s[7] = {‘s’,’h’,’i’,’v’,’a’,’m’,’\0’};
3. char s[7] = {‘s’,’h’,’i’,’v’,’a’,’m’};
4. char s[7] = “shivam”;
5. char s[] = {‘s’,’h’,’i’,’v’,’a’,’m’,’\0’};

Let us observe a few important aspects of string -

1. In the last declaration null character is missing i.e. a ‘\0’ is added
automatically the compiler at the end of the string.

2. The size of the string should be equal to the maximum number of

characters in the string plus one.

3. The initialization of the string without the mentioning of size is also
permitted, as in the integer array. In such case the array size will be
automatically based on the number of elements initialized.

String input -

The common function used for input is scanf. This function can also be used to
input the string using format specifer %s.

For e.g.

scanf(“%s”,name);

While inputting the string the & (address of operator is not required).

A problem with the scanf function is that it ends the input on the first white
space it finds (a white space includes blank, tabs, carriage return, form feed, new line
character.)

Therefore if the following line is typed as input--
Shivam Kumar

Then only the string “Shivam” will be taken as input into the variable name, because the
blank space after word “Shivam” will end the string.

Many times it is required to read the entire line of text, and it is not possible
using the scanf. This can be achieved by using the getchar function.

This function reads a single character at a time and store the character in the

array. So we have to use this function repeatedly using a loop until the user types the
null character or a new line character.
Another function which can be used to input the string is called as gets(). And is used
as:

char name[10];
gets(name];

This function can also read the blank spaces and thus take a line as input in one
go.

String output -

The commonly used output function printf() can be used for string also using the format
specifer %s to display the string on the screen.

printf(“%s”,name);

Drill Note - Also the function puts() can be used.

puts(name);
The precision of the string can also be specified %10.3

Indicates that the first three characters are to be printed in the field width of 10
columns. 7 spaces will be printed before the string. But if the specification is (%-10.4)
then the string will be printed as left justified and all the 7 spaces will printed towards
the right.

1. Remember that if the field width is less than string length then string equal

to string length will be printed. printf(“%3.4s”,name); will print 4
characters not 3.

2. The integer value typed to the right side of the decimal point specifies the
number of characters to be printed.

3. If the number of characters to be printed is specified as 0 then nothing is

printed.

char name[10]=”Shivam Kumar”;

printf(“%s”,name);

printf(“%6s”,name);

printf(“%12.6s”,name);

printf(“%-12.6s”,name);

printf(“%.2s”,name);

SOME SOLVED PROGRAMS -

1. WAP to sort the names in a given list in ascending order.
#include<string.h>
main()
{
 char names[10][20], t[20];
 int i=0,j=0,n;
 printf("Enter how many names");
 scanf("%d",&n);
 /*Input names*/
 for(i=0;i<n;i++)
 {
 printf("Enter name %d ",i+1);
 gets(names[i]);
 }

/*Sorting*/
 for(i=0;i<n-1;i++)
 {
 for(j=i+1;j<n;j++)
 {
 if(strcmp(names[i],names[j]) > 0)
 {
 strcpy(t,names[i]);
 strcpy(names[i],names[j]);
 strcpy(names[j],t);

 }
 }
 }
 /*Output*/
 for(i=0;i<n;i++)
 {
 printf("%s\n",names[i]);
 }
 getch();

}

2. Input a string through keyboard write a program to print a string in
reverse order as per word:

 e.g. How Are You = You Are How.*/
main()
{
 char s1[50],t1[50],t2[50]="";
 int i=0,j=0;;
 printf("Enter a string");
 gets(s1);
 strcat(s1," ");
 while(s1[i]!= '\0')
 {
 if(s1[i] == ' ')
 {
 t1[j++] = ' ';
 t1[j] = '\0';
 strcat(t1,t2);
 strcpy(t2,t1);
 j = 0;
 }
 else
 t1[j++] = s1[i];
 i++;
 }
 puts(t1);
 getch();
}

3. WAP to input a text and replace an entered string occurring within the

text with equal number of "*",at all occurring.

 char ch;
 printf("Enter text: ");
 while((ch=getch())!='\r')
 printf("*");

4. Write a program that converts a string like “124” to an integer 124.

 char str[6];
 int num= 0, i;
 printf(“Enter a string containing a number:”);
 scanf(“%s”,str);
 for(i=0; str[i]!=’\0’; i++)
 {
 if(str[i]>=48 && str[i]<=57)
 num = num*10+(str[i]-48);
 else
 {
 printf(“Not a valid string”);
 getch();
 return;
 }
 }
 printf(“\nThe numer is: %d\n”,num);

Drill Note: Function atoi also converts string to integer.
What would be the output of the following programs?

1. char c[2]= “A”;
 printf(“%c”,c[0]);
 printf(“%s”,c);
Output: A A
From first printf() ‘A’ gets
printed because the array size is 2
so ‘A’ is stored on the 0 th position
and ‘\0’(NULL) is stored on the
first position. And by using second
printf() the output will be ‘A’

7. char str1[] =
{‘H’,’e’,’l’,’l’,’o’,0};
 char str2[] = “Hello”;

 printf(“\n%s”,str1);
 printf(“\n%s”,str2);
Output: Hello
 Hello
Because in the first string the last
character is 0 that is the ASCII of

because the whole string will gets printed
that is “A”.
2. char s[] = “Get organized!
learn
 c!!”;
 printf(“\n%s”,&s[2]);
 printf(“\n%s”,s);
 printf(“\n%s”,&s);
 printf(“\n%c”,s[2]);
 Output: t
organized! learn c!!
 Get organized! learn c!!
 Get organized! learn c!!
 t
Through first printf() “t
organized! learn c!!” gets printed
because we put &s[2] for printing
the string so the printing will start
from the 3rd character of string
because when we use only name
of string it contain the base
address and string printing will
start from base character.
Through second printf() the
whole string will gets printed
because string name is used there.
Through third printf() the whole
string will gets printed because the
address of string(base address
because no subscript or index is
used) is passed that will be same
as second printf().
Through last printf() only third
character is printed because here
%c format specifier is used and in
printing list s[2] that refer the third
character is used.
3.
printf(“%c”,”Harry”[4]);

NULL(\0) character and when srr1
gets printed it will print the whole
string “Hello” and similarly str2 is
also gets printed.

8. printf(5+”Good
Morning”);
 Output: Morning.
Here compiler will understand the
above printf that the string should be
print starting from the 5th character of
the string.

9. printf(“\n%d %d

%d”,sizeof(‘3’),sizeof(“3”),sizeof(3)
);
Output: 2 2 2
Because first sizeof contain character
but in C the character will convert
with its ASCII value and compiler
understand it as int so it occupy
2bytes. The second sizeof is a string
that contains only single character but
C compiler automatically puts null
character at the end of the each string
so the above string will contain 2
character that occupy 2 bytes. And
the 3rd sizeof contains 3 that’s an
integer value and occupy 2 bytes.
10. char a[8] =”Rhombus”;
 int i;
 for(i = 0; i<=7; i++)
 printf(“\n%d”,*a);
 a++;
Output: Error.
Because array ‘a’ can’t be
incremented.

11. main()

Output: y.

Because when we print s[4] then it
print the 5th character of string
here we use string “matrix” in the
place of s and similarly of s it will
print the 5th character of string that
is r.

4. char a[] =
{‘M’,’A’,’T’,’R’,’I’,’X’};
int i;
 for(i = 0; i<=5;i++)
 printf(“\n%c”,a[i]);

Output: No Error.

Each time the ith of array gets
printed till condition is true
because the counter is start from 0
so the printing will start from 0th

element and gets printed till 5 so
each character of string
“MATRIX” gets printed and
separated by the line.

5. main()

{
 char s[7]= “Strings”;
 printf(“%s”,s);
}

Output: Unpredictable. Here s[]
has been declared as a 7 character
array and into it a 8 character
string has been stored. This would
result into overwriting of the bytes
beyond the seventh byte reserved
for the array with a “\0”.there is
always a possibility that

 {
 char string[]= “Author Harry”;
 int a=5;

printf(“a>10?”%20s”:
 “%s”,string);

Output: Author Harry

12. main()
 {

printf(5+ “Computers”);
 }

Output: ters

13. main()
 {

 char s1= “Matrix”;
 char s2= “Computers”;
 if(s1= = s2)
 printf(“Equal”);
 else

printf(“Unequal”);
}

Output:Unequal

14. main()

{
 printf(“%c”,
“Matrix”[4]);
}

Output: i
15. Which is more appropriate for
reading in a multi-word string?
gets() printf(
) scanf() puts()

something important will be
overwritten which would be
unsafe.

6. How would you output \n on the
screen?

Output: “\\n”

Output: gets()

Fill in the blanks:

1. “A” is a _______ whereas ‘A’ is a
_______________________________.

2. A string is terminated by a __________which is written as ___.
3. The array char name[10] can consist of a maximum of_____

characters.
4. The array elements are always stored in ___________memory

locations.
Answers:

1. string character 2. null character \0
3. 9 4.
consecutive

Lab Exercise -

1. WAP to concatenate two strings.
2. WAP that compares two strings
3. WAP to read a line of text from the keyboard and display the following

information on the screen:
1. number of words
2. number of characters.

4. WAP to count the length of string inputted by user.
5. WAP to copy one string into another.
6. WAP to concatenate two strings in a third string.
7. WAP to copy a string into another in reverse order.

8. WAP to check whether string inputted by user is palindrome or not.
9. WAP to change the string into lowercase.
10. WAP to remove all the leading blanks in a string inputted by an user.
11. WAP that will print out all the relations of a string typed into it. for eg, the

rotations of word " space " are: space paces acesp cespa espac
12. WAP to input any string and print the same in reverse.
13. WAP to input a string and a character to be searched within string. Print

the frequency of the character within the string.
14. WAP to input a string and print the character which occurs the maximum

number of times within the string.
15. WAP to input any string and print the frequency of each character within

the string. The character with multiple frequencies should be displayed
only once in the output, with the frequency value.

16. WAP to display the biggest name in an entered string. (with maximum
length).

17. WAP to enter any name and print the same as per the following format:
input:shruti
output: s

sh
shr
shru
shrut
shruti

18. WAP to input any sentence and arrange the characters of each word in
alphabetical order separately and the print the sentence. For eg , input:
computer program in basic.
output: cemoprtu agmoprr in abcis.

19. WAP to take as inputs from the user by using a single subscripted variable,
the marks in computer science of 40 students and then print those marks in
ascending order in a column.

20. WAP to take a proverbial statement(like "failures are the pillars of
success.") As an input from the user and then output the frequency of the
vowels occurring in the statement.

21. A city hotel has 10 floors ranging from 1 to 10,each having 60 rooms. Make

use of a single dimensional array for the name of the occupant and a 2-d
array place(a, b),where a and b represent the floor and the room number
respectively.WAP to allocate room for an occupant after inputting the
name of the occupant and the room number.

22. WAP to input a text and print the word containing the maximum number of

vowels.

23. WAP that replaces two or more or consecutive blanks in a string by a
single blank. For e.g., if the input is: grim return to the planet of apes!!
The output should be :grim return to the planet of apes!!

CHAPTER
∞ 8 ∞

(Your Brain On Functions)

Introduction-
Function is a small program which take some input and give us some output.

Function allow a large program to be broken down into a number of smaller self
contained components, each of which has a definite purpose. It avoids rewriting the
code over & over. Breaking down of logic into separate functions make the entire
process of writing & debugging easier.

Or another hand you can say Function is a self contained block of statements

that is used to perform some task. A function is assigned some work once and can be
called upon for the task any number of times. Every C program uses some functions, the
commonly used functions are printf, scanf, main, etc.

Functions can be library functions or user defined functions. Library functions

are those functions which come along with the compiler and are present in the disk. The
user defined functions are those which the programmer makes by himself to make his
program easier to debug, trace.

Drill Note-

printf (), scanf(), exit(), pow() are library functions. Every library function

has a header file. There are a total of 15 header files in C. main() is a user defined
function.

Every program must have a main function. This main function is used to mark

the beginning of the execution. It is possible to code any program using only the main
program but this leads to many problems. It becomes too large and complex thus
difficult to trace, debug and test.

But if the same program is broken into small modulus coded independently and

then combined into a single unit then these problems can be solved easily. These
modulus are called as functions. Thus a function can be defined as a small program
which takes some input and gives us some output.

Drill Note- I am not going to type header files again and again, so when writing
programs please don’t forget to start your programs with header files.

Function to calculate the sum of two numbers:

int sum(int, int); /* Function Prototype or Declaration*/
main()
{

 int a,b,ans;
 printf(“Enter two numbers: “);
 scanf(“%d %d”,&a,&b);
 ans= sum(a,b); /*Function Call*/
 printf(“ sum is %d”, ans);
 getch();

}
int sum(int x, int y) /*Function Definition or Process*/
{

 int z;
 z = x + y;
 return(z);

}

Now let us see some of the features of this program:

1. The first statement is the declaration of the function which tells the
compiler the name of the function and the data type of the arguments

passed.

2. The declaration is also called as prototype.

3. The declaration of a function is not necessary if the output type is an
integer value. In some C compilers declaration is not required for all the
function.

4. The function call is the way of using the function. A function is declared

once, defined once but can be used a number of times in the same
program.

5. When the compiler encounters the function call, the control of the

program is transferred to the function definition the function is then
executed line by line and a value is returned at the end.

6. At the end of the main program is the definition of the function, which

can also be called as process.

7. The function definition does not terminate with a semicolon.

8. A function may or may not return any value. Thus the presence of the
return statement is not necessary. When the return statement is
encountered, the control is immediately passed back to the calling
function.

9. While it is possible to pass any number of arguments to a function, the

called statement returns only one value at a call. The return statement
can be used as:

return;
or
return(value);

The first return without any value, it acts much as the closing of the braces
of the function definition.

10. A function may have more than one return statement. It can be used as

:

if (a!=0)

 return(a);
else

 return(1);

11. All functions by default return int. But if the function has to return a
particular type of data the type specifiers can be used along with the
function name.

long int fact(n)

12. If function main() calls a function sum() then main() is the calling
function and sum() is called function.

No arguments and no return values:

Some functions do not receive any value from the calling function. Thus the
function prototype will be as:

prn() i.e. no arguments will be passed. This can also be achieved as

prn(void) And similarly the calling function does not get any value from the function.
This is made possible by using the keyword void before the function name. to illustrate
this point let us consider the following program:

void prn(); /*declaration can also be made as void prn(void);*/
main()
{

 prn();
 prn();
 prn();

}
void prn()
{

 printf(“Hello”);
}

Argument Passing Mechanism -

(i) Call by value -

When arguments are passed by value then the copy of the actual parameters is

transferred from calling function to the called function definition in formal parameters.

Now any changes made in the formal parameters in called function definition

will not be reflected in actual parameters of calling function. Like in the above function
to calculate the sum of two numbers the calling statement was written as:

ans = sum(a, b);

Here the values of variables a, b are passed from the main function to the

calling function’s definition.

In the definition variables x, y accept the values of a, b respectively. Here, the

variables a, b are called the actual arguments while x, y will be called the formal
arguments.

The scope of the actual and formal arguments is different so any change made

in the formal arguments will not be seen in the actual arguments.
e.g:

void swap(int, int);
main()
{
 int a,b;
 printf(“Enter 2 numbers”);
 scanf(“%d%d”,&a,&b);
 swap(a,b); /*In this call statement a,b are the actual parameters*/

printf(“%d\t%d”a,b);

}
void swap(int x,int y) /*In this function definition x & y are the formal parameters */

{
 int t;
 t=x; x=y; y=t;

}

Drill Note –
In the above e.g.: changes made in x, y will not be reflected in a,b.

(ii) Call by reference -

When arguments are passed by reference then the address of the actual
parameters is transferred from calling function to the called function definition in formal
parameters.

Now any changes made in the formal parameters in called function definition

will be reflected in actual parameters of calling function.

Sometimes it is not possible to pass the values of the variables, for example

while using an array it will not be possible to pass all the values of the array using call
by value.

So, another type of function calling mechanism is used call by reference where

the address of the variable is passed.

Here the definition would work by reaching the particular addresses. This

method is generally used for the array and pointers.
e.g.:

main()
{

 int a,b;
 printf(“Enter 2 numbers”);
 scanf(“%d%d”,&a,&b);
 swap(&a, &b); /*In this call statement address

of a, b gets transferred*/
 printf(“%d\t%d”a,b);
 }

void swap(int *p1, int *p2) /*In this function
definition p1 & p2 are the pointers which receive the
address of a, b*/

{

 int t;
 t=*p1; *p1=*p2; *p2=t;
 }

Drill Note –
In the above e.g.: changes made in p1, p2 will be reflected in a, b automatically.

Drill Note –

Arrays are also passed by reference. When we pass the name of the array then
only the base address is transferred in the function definition.

Type of Functions -

1. Library Functions - Functions defined previously in the library
 are called as library functions.

e.g.
 #include<math.h>
 main()
 {
 int n, p, ans;
 printf(“Enter number and its power”);
 scanf(“%d%d”,&n,&p);
 ans = pow(n,p);
 printf(“%d”,ans);
 getch();
 }

Common Library Functions:

stdio.h functions-

fclose() Closes a stream
fcloseall() Closes all open streams
feof() Tests if end-of-file has been reached on a stream
fflush() Flushes a stream

fgetc() Gets a character from a stream
fgetpos() Gets the current file pointer position
fsetpos() Positions the file pointer of a stream
fgetchar() Gets a character from stdin
fgets() Gets a string from a stream
fopen() Opens a stream
fprintf() Sends formatted output to stream
fputc() Outputs a character to a stream
fputs() Outputs a string to a stream
fread() Reads data from a stream
fscanf() Scans and formats input from a stream.
fseek() Sets the file pointer to a particular position.
ftell() Returns the current position of the file pointer.
fwrite() Writes to a stream.
getc() gets one character.
getchar() gets a character from stdin.
gets() Get a string from stdin.
getw() gets an integer from stream.
printf() Sends the formatted output to stdin.
putc() Outputs a character to stdout.
putchar() Outputs a character on stdout.
puts() Outputs string and appends a newline character.
putw() Outputs an integer on a stream
remove() Removes a file
rename() Renames a file
Rewind() Brings the file pointer to stream's beginning
scanf(). Scans and formats input from stdin.

conio.h

clrscr() Clears text mode window
getch() gets a character from console but does not echo to the screen
getche() gets a character from console, and echoes to the screen
putch() Oututs character to the text window on the screen

cgets() Reads string from console
getchar() Inputs a character from stdin.

stdlib.h

itoa() converts an integer to a string.
atoi() Converts string of digits to integer.
Random() Returns a random number between 0 and number – 1
randomize() initializes random number generator.
exit() Terminates the program.
min() Returns the smallest of two numbers.
max() Returns the largest of two numbers.
ltoa() converts a long to a string
ultoa() converts an unsigned long to a string
atof() converts a string to a floating point
_atold() converts a string to a long double

math.h

abs() gets the absolute value of an integer
acos() Calculates the inverse of cos Accepts the angle value in

radians
asin() Calculates the inverse of sin Accepts the angle value in radians
atan() Calculates the inverse of tan Accepts the angle value in radians
ceil() Returns the largest integer in given list.
cos() Calculates the cosine Accepts the angle value in radians
cosh() Accepts the angle value in radians
exp() Calculates the exponent
floor() Returns the smallest integer in given list.
log() Calculates the natural logarithm
log10() Calculates the log of base 10
pow() Calculates the power of a number
sin() Calculates the sine value of an angle. Accepts the angle value

in radians
sqrt() Calculates the square root of a number

tan() Calculates the tangent value of an angle. Accepts the angle
value in radianstanh() Calculates the tangent hyperbolic value.

string.h

string.h

strcat() Function to concatenate(merge) strings.
strcmp() Function to compare two strings.
strcpy() Function to copy a string to another string
stricmp() Function to compare two strings ignoring their case.
strlen() Function to calculate the length of the string
strlwr() Converts the given string to lowercase
strrev() Function to reverse the given string.
strupr() Converts the given string to uppercase
strdup Duplicates a string.
strnicmp() Compares the first n characters of one string to another

without being case sensitive.
strncat() Adds the first n characters at the end of second string.
strncpy() Copies the first n characters of a string into another.
strchr() Finds the first occurrence of the character.
strrchr() Finds the last occurrence of the character.
strstr() Finds the first occurrence of string in another string.
strset() Sets all the characters of the string to a given character.
strnset() Sets first n characters of the string to a given character.

2. User Defined Functions -

Functions defined by us are known as User Defined Functions. main() function is also
user defined function because the definition of main() is defined by us.
 e.g.
 int power(int, int);
 main()
 {
 int n, p, ans;
 printf(“Enter number and its power”);
 scanf(“%d%d”,&n,&p);

 ans = power(n,p);
 printf(“%d”,ans);
 getch();
 }
 int power(int n, int p)
 {
 in ans=1, i;
 for(i=1;i<=p;i++)
 {
 ans = ans * n;
 }
 return(ans);
 }

Function whose argument is a two dim array:-

void mat_sum(int m1[][10], int r1, int c1, int m2[][10], int r2, int c2, int m3[][10])

{
 int i,j;

if(r1 != c1 && r2 != c2)
 {
 printf(“Can’t sum”);
 exit();
 }

for(i=0;i<r1;i++)
 for(j=0;j<c1;j++)
 m3[i][j] = m1[i][j] + m2[i][j];

 }

The above function can be called from main() as mat_sum(m1,r1,c1,m2,r2,c2,m3);

Recursion -

A function is called recursive if a statement within the body of a function calls
the same function. Sometimes called as 'circular definition', recursion is a function
calling itself in the definition. A recursive function should have two parts recursive
statement & a termination condition.

Suppose we want to calculate the factorial of an integer. As we know, the
factorial of a number is the product of all the integers between 1 and that number.
Factorial of 4 can be expressed as 4! = 4 * 3! Where ! stands for factorial. Thus the
factorial of a number can be expressed in the form of itself. Hence this can be
programmed using recursion.

e.g.:

int fact (int); /*function definition */
main()
{

 int n,ans;
 printf(“Enter a number: “);
 scanf(“%d”,&n);
 ans = fact(n); /*function call */
 printf(“factorial = %d”,ans);
 getch();

}
int fact(int n)
{

 if(n= =0) /*terminating condition*/
 return (1);
 return (n*fact(n-1)); /*recursive statement*/

}

Now let us evaluate this program:

Assuming the value of n is 3 when the control of the program is passed from
the main() function the function fact. Since n is not equal to 0 so the condition is false
and the recursive statement is executed.

3*fact(2)

now fact(2) is the calling function and thus the control of the program again

reaches the beginning of the definition. Still the terminating condition is false so the
recursive statement is executed.

2*fact(1)
Again fact(1) is the calling function and thus the control of the program again

reaches the beginning of the definition. Still the terminating condition is false so the

recursive statement is executed.

1 * fact(0)

Now the condition is true so the answer to the calling function(fact(0)) will be 1 and so
on. Thus the sequence of acts will be:

fact(3)=3 * fact(2)
fact(2)=2 * fact(1)
fact(1)=1 * fact(0)

When we use a recursive program a stack is used to organize the data. Stack is

a Last In First Out (LIFO) data structure. This means that the last item to be stored (push
operation) in the stack will be the first one to come (pop operation) out.

In the above program when the fact(2) is called the value 3 will be stored in

the stack. Similarly when fact(1) is called the value 2 will be stored at the top of 3 on
the stack.

Now when the fact(0) returns 1. it will be multiplied to the first value in the stack i.e.

1. This result will be multiplied to the second waiting value of the stack i.e. 2
and so on.

When a function in its definition calls another function it is
called chaining. Recursion is a special type of chaining where a
function calls itself.

e.g.:

main()
{

 printf(“Harry\n”);
 main();

}
when executed the program will give the output as :
Harry
Harry
Harry
_

 _
The execution of any recursive function can continue indefinitely so to bring the
execution to the end a terminating condition is applied.

Use of recursive functions is to solve the problem where the solution is expressed in
terms of successively applying the same solution to subsets of problems.

But there are also some disadvantages of the recursive functions:

1. These functions are more time consuming, so the execution speed of the

program is slow.

2. More memory space is occupied due to the formation of stack to keep
the waiting values.

Fill in the blanks -

1. Function returns the control to the calling function on the final __or __.

2. To not return anything to the calling function, _____________can be used.

3. List of the parameters passed to a function are separated using ______.

4. The default return type of a function in C is

_____________________________.

5. In C all the arguments passed in a function are by ______________________.

6. Call–by–reference can be achived through
_____________________________.

7. main is a

__
function.

8. ___ are mandatory in a

function.

9. __________________________________ is the ability of a function to call by

itself.

10. The point at which a program stops recursion is called __________________

11. Recursion uses ___________________________ memory than iterative
method.

Answers -

Solved programs -

1. WAP to calculate the power p of a number n by user defined function.
int pow(int,int);/*declaration*/
main()
{
 int n,i,ans,p;
 printf("Enter two numbers: ");
 scanf("%d %d",&n,&p);
 ans=pow(n,p);/*call*/
 printf("%d to the power %d is %d",n,p,ans);
}
int pow(int n,int p)/*defination*/
{
 int i,ans=1;
 for(i=1;i<=p;i++)
 ans=ans*n;
 return(ans);
}

2. WAP to calculate the Greatest common divisor of two numbers using

recursive function.

int gcd(int, int);
main()
{

 int n,m;
 int ans;
 printf("\n Enter two integer numbers");
 scanf("%d %d",&n,&m);
 ans = gcd(n,m);
 printf("GCD of %d and %d is %d",n,m,ans);
}
int gcd(int n, int m)
{
 if(n >= m && n%m == 0)
 return(m);
 else
 return gcd(m,n%m);
}

3. WAP to calculate the Greatest common divisor of two numbers using non-
recursive function.

int gcd(int,int);
main()
{
 int n,m,ans;
 printf("Enter two integers");
 scanf("%d %d",&n,&m);
 ans = gcd(n,m);
 printf("GCD of %d and %d is %d", n,m,ans);
}
int gcd(int n, int m)
{
 int t;
 while(m!=0)
 {
 t = m;
 m = n % m;
 n = t;
 }
 return (n);
}

4. Write a program to search a sub-string using pointers.

int strsearch(char [],char []);
main()
{
 char s1[50],s2[10];
 int ans=0;
 printf("Enter a string"); /*input of string */

gets(s1);
 printf("Enter a string"); /*input of substring to search*/

gets(s2);
 ans = strsearch(s1,s2); /*function call*/
 if(ans == -1) /*using the returned value*/
 printf("String is not found");
 else
 printf("String is found at pos %d ",ans+1);
}
int strsearch(char s1[],char s2[]) /*definition*/
{
 int i,j;
 i=j=0;
 while(s1[i] != '\0')
 {
 if(s1[i] == s2[j])
 {
 while(s1[i+j] == s2[j] && s2[j] != '\0')
 j++;
 if(s2[j] == '\0')
 return (i);
 j=0;
 }
 i++;
 }
 return (-1);
}

5. WAP to calculate the determinants of a matrix*/

#define MAXROW 4
#define MAXCOL 4

int det_mat(int [][MAXCOL],int,int);
main()
{
 int mat[MAXROW][MAXCOL]={0};
 int r,c,i,j,sum;
 printf("Enter dimension of matrix");
 scanf("%d%d",&r,&c);
 /*Input Matrix */
 for(i=0;i<r;i++)
 for(j=0; j<c;j++)
 {
 printf("Enter element %d %d", i+1, j+1);
 scanf("%d",&mat[i][j]);
 }
 /*function call*/
 sum = det_mat(mat,r,c);
 /*output*/
 printf("%d",sum);
}
int det_mat(int mat[][MAXCOL], int r, int c)
{
 int i,j,k,sign,sum,a;
 int mat2[MAXROW][MAXCOL]={0};
 sign = 1;
 sum = 0;
 if(c = = 1)
 return(mat[0][0]);

 for(i=0 ; i<c; i++,sign *= -1)
 {
 for(j=1; j<r; j++)
 {
 for(k=0; k<c; k++)
 {
 if(k == i)
 continue;
 if(k>i)
 mat2[j-1][k-1]=mat[j][k];
 else
 mat2[j-1][k]=mat[j][k];

 }
 }

 sum = sum + mat[0][i] * sign * det_mat(mat2,r-1,c-1);
 }
 return (sum);
}

Fill in the blanks –

The return statement returns only ________.

An ________ can be assigned initial values by including appropriate expressions by
transferring control to some other part of program.

An automatic variable does not retain __________ once the control is transferred out of
its defining function.

An extern variable declaration must begain with storage class specifiers _______.

If the line int sp;

Occurs outside any function, it _________________ the external variable sp.

if the line
static char buffer[max];
Appears in one file of a program, then the variable name will not conflict with the same
name in __ of the same program.

An external variable definition must not begin with storage class specifies _____.

What would be the output of the following program?

1. main()
 {
 printf(“\n welcome in c:”);
 display();
 }

5. main()
 {
 int i = 40,c;
 c = check(i);
 printf(“\n%d”,c);

 display()
 {
 printf(“History of C:”);
 main();
 }

Output: Both massage will get printed
indefinitely.

Because when main() calls display
control jumps to the display and because
in the body of display main is again call
then control again jumps to the main and
this process will be repeat repetedly.

2. main()
 {
 float area;
 int radius = 1;
 area = circle (radius);
 printf(“\n%f”,area);
 }
 circle(int r)
 {
 float a;
 a = 3.14*r*r;
 return(a);
 }
Output: 3.000000

Because in function definition there is no
explicit return type and default return type
is int so when we return a that is 3.14
will demote to 3. And when 3 is printed
as float it will promote in floating point
format and gets printed 3.000000.

3. main()
 {
 printf(“\n Go for Matrix:”);

 }
 check(int ch)
 {
 if(ch>=40)
 return(100);
 else
 return(10*10);
 }
Output: 100
Because the value of i is passed to ch that
is 40. and when condition is checked in
function definition it becomes true so if
block is executed and returns 100.

6. main()
 {
 int i = 5, j = 2;
 hello (i, j);
 printf(“\n%d %d”,i,j);
 }

 hello(int i, int j)
 {
 i = i*i;
 j = j*j;
 }
Output: 5 2
The function here is call by value so any
change in the formal argument will not
effect the actual argument. So in main()
function i and j are still same.

7. main()
 {
 int x = 5, y = 2;
 hello(&x ,&y);
 printf(“\n%d %d”,x,y);
 }
 hello(int *i,int *j)
 {

 main();
 }
Output: The massage will print
indefinitely.

Because main again call main() that will
be recursive call without any terminating
condition,so massage gets printed
indefinitely.

4. main()

 {
 static int i = 0;
 i++;
 if (i<=5)
 {

printf(“%d\t”,i);
 main(
);
 }
 else
 exit();
 }

Output: 1 2 3
4 5

Here first i++ is executed and each time
the value of i increment by 1. now for the
first time it will be 1 and condition
becomes true and gets printed the value
of i that is 1 now again main function is
called and we know i is declared as static
so it’s value will not again initialize and
now this time when increment take place
it becomes 2 and in this way until i will
not be 5, i gets printed and call main
function repeatedly but when i becomes 6
condition will be false and control jumps

 *i = *i * *i;
 *j=*j * *j;
 }
Output: 25 4

In the above program because function is
call by reference and the address of x any
y is passed to i and j and by dereference
[*i = *i * *i] becomes [x = x*x] that gives
25 and similarly next statement gives 4.
because here function is called by
reference so it will change the actual
argument and then x =25 and y = 4 gets
printed through printf().

8. main()
 {
 int i = 5, j = 3;
 calc(&i , j);
 printf(“\n %d %d”,i,j);
 }
 calc(int *i, int j)
 {
 *i =*i * *i;
 j = j*j
 }
Output: 25 3

Here to argument is passed to the called
function first the address of i and second
the value of j so when we dereference i. it
change the actual argument but the
operation on j doesn’t effect to actual
argument so the value of j remains same
and i gets change.

to the else block and because of exit() it
stops the program.

Point out the errors, if any, in the following programs:

1. main()
 {
 int a = 3,b = 4, c,k;
 c = summult(i,j);
 d = summult(i,j);
 printf(“\n%d
%d”,c,d);
 }
 summult(int x, int y)
 {
 int a1, b1;
 a1= x+y;
 b1 = x*y;

return(a1,b1);
 }
Output: Error. More than one value
can’t be returned by a function.

2. main()
 {
 int x;
 x = massage();
 }
 message()
 {
 printf(“\n your
computer can be effected by
Viruses:”);
 return;
 }
Output: No Error.

7. main()
 {
 message();
 message();
 }
 messae();
 {
 printf(“Whole
world is
 waiting for
you:”);
 }
Output: Error. Function definition
must not be present immediately after
the function definition.

8. main()
 {
 matrix()
 {
 printf(“Welcome in the
world
 of computer:”);

}
 }
Output: Error. One function can’t be
defined into the body of another
function.

9. main()
 {

Because here no explicit return type
is prefixed in function definition so
default return type is int and here
return statement is also exist in
function definition so it will return a
garbage integer value. But if there
will be void type in function
definition then error is encounterend.

3. main()
 {
 float a = 185.5;
 char ch = ‘C’;
 display(a,ch);
 }

 display(a,ch)
 {
 printf(“\n%f
%c”,a,ch);
 }
Output: Error.
Formal argument don’t have any data
type in function definition.

4. main()
 {
 int a = 35,b;
 b = check (a);
 printf(“\n %d”,b);
 }
 check(m)
 {
 int m;
 if(m>40)
 return(1);
 else

return(0);

 Matrix(computer(
));
 }
 void computer()
 {
 printf(“Beginning with C:”);
 }
Output:
9. main()
 {
 int i = 135, a =
135, k;
 k = demo(i , a);
 printf(“\n %d”,k);
 }
 demo(int j, int b)
 int c;
 {
 c = j + b;
 return (c);
 }
Output: Error. The declaration int c
should be inside the body of demo().

10. main()
 {
 int p = 23,f = 24;
 out(&p, &f);
 printf(“\n%d
%d”,p,f);
 }

 out (int q, int g)
 {
 q = q + q;
 g = g + g;
 }
Output: Error. The variable q and g
in function definition should be
declared as integer pointer.

 }
Output: Error. The variable m must
be declared before the braces.The
formal argument can be declared by
two following ways:
(a)Check(int m)
 {

 }
(b)check()
 int m;
 {

 }

5. main()

{
 display();
}
void display()
{
 printf(“Matrix”);
}

Output: Error of redeclaration
because display() is called before it
is defined. In such cases the compiler
assumes that the function display() is
declared as int display ();
that is, an undeclared function is
assumed to return an int and accept
an unspecified number of arguments.
Then when we define the function the
compiler finds that it is returning
void hence the compiler reports the
discrepancy.

6. main()

 {
 int a=1;

 while(a<=5)

11. main()
 {
 int i = 35, *z;
 z = fun(&i);
 printf(“\n%d”,z);
 }

 fun(int *m)
 {
 return(m + 2);
 }
Output: Unpredictable Output.
Here in the above program the
address of i(&i) suppose 2005 is
passed to m so m contains the
address of i and returns m+2 is equal
to 2007. so this function return 2007
to the main() that will store in z and
z gets printed through printf(). Here
address is assume by the compiler so
we can’t say what will be the output
but there will print an int value.

 13. main()

{
 int a,b;
 a=sumdig(123);
 b=sumdig(123);
 printf(“%d %d”,a,b);
}
sumdig(int n)

{
 static int s=0;
 int d;
 if(n!=0)
 {

d=n%10;
 n=(n-

 {
 printf(“%d”,a);
 if(a>2)
 goto
abc;
 }
 }
 fun()
 {
 abc:
 printf(“Author Harry”);
 }
Output: goto cannot take control to a
different function.

main()
{
 int a=10;
 void f();

a=f();
printf(“%d”,a);

}
void f()
{
 printf(“Hello”);
}
O ut put : The function has been
declared as void but still the
program is trying to collect the value
returned by f() in variable a.

d)/10;
 s=s+d;

sumdigit(n);
}
else

 return
(s);

}
Output: 6 12
 14. f(int a, int b)
 {
 int a;
 a=20;
 return a;
 }
Output: Error The variable a is
redeclared
 15. main()
 {
 int b=10;
 b=f(20);

 printf(“%d”,b);
 }
 int f(int a)
 {
 a>20?
return(10):return(20);
 }
Output: return statement cannot be
used as shown with the conditional
operators. Instead the following can
be used:
return(a>20?10:20);

State whether the following statements are True or False:

1. The variables commonly used in C functions are available to all functions in

a program.

2. To return the control back to the calling function we must use the keyword
return.The same variable names can be used in different functions without
any conflict.

3. Every called function must contain a return statement.

4. A function may contain more than one return statement.

5. Each return statement in a function may return a different value.

6. A function can still be useful even if you don’t pass any arguments to it and

the function doesn’t return any value back.

7. Same names can be used for different functions without any conflict.

8. A function may be called more than once from any other function.

9. It is necessary for a function to return some value.

10. A function can have several declarations but only one definition.

11. A function cannot be defined inside another function.

12. Will the following function work:
main()
{
 f1(int a, int b);
{
 return(f2(20));
}
f2 (int a)
{
 return(a*a);
}

13. In a function two return statements should never occur.

14. In a function two return statements should never occur successively.

15. In C all functions except main() can be called recursively.

16. Usually recursion works slower than loops.

17. Too many recursive calls may result in stack overflow.

Answers:

 1. False 2. False 3. True 4.
False
 5. True 6. True 7. True 8.
False
 9. False 10. True 11. True 12.
True 13. False 14. True 15. False
16. True 17. True

Answer the following:

1. When we mention the prototype of a function we are defining or declaring

the function?

Output: declaring

2. There is a mistake in the following code, add a statement to remove it.
main()
{
 int a;
 a=f(10,3,14);
 printf(“%d”,a);
}
f(int aa, float bb)
{
 return((float)aa+bb);
}

Output:
The declaration of the function f is missing add the following above
main()

float f(int,float);

3. What are the two notations of defining functions commonly known as:

int f(int a, float b)
{
 /*some code*/
}
int f(a,b)
int a;
float b;
{
 /*some code*/
}
Output:

The first one is known as ANSI notation and the second is known as
Kernighan and Ritchie or simply K&R notation.

Lab Exercise –

1. Write a function which takes to integer as argument and return there
sum. WAP to test this function.

2. Write a function which takes to integer as argument and return there
average in float. WAP to test this function.

3 . WAP that uses a function that converts a lowercase character to its
uppercase.

4. WAP that uses a function that calculates factorial of a given number.

5. WAP that uses a function power that calculates the power of a given
number.

6. WAP that uses a function that finds the largest of three integer
quantities.

7. WAP that receives any year from the keyboard and uses a function to
determine whether the year is a leap year or not.

8. WAP that uses a function which receives a float and an int from
main(),finds the product of these two and returns the product which is printed
through main().

9. WAP that uses a function to calculate the sum of n odd integers.

10. WAP that uses a function to calculate the sum of n even integers
starting from a given even integer.

11. WAP that uses a function to determine whether a given positive
integer is a prime number or not.

12. WAP that uses a function to determine whether a given positive
integer is a fibonacci number or not.

13. WAP that uses a function that finds the length of the largest
monotonically increasing subsequence in a sequence of real numbers.

14. WAP that uses a function for finding the absolute value of the integer
parameter passed to it (do not use any library function).

15. WAP that uses a function that takes two arguments: a character and an
integer and prints the character given number of times. if however the integer is
missing the function prints the character twice.
16. WAP that uses a function to sum n natural numbers starting from a
given number.

17. WAP that uses a function that takes a character argument and prints it
number of times equal to number of times that function has been called to the
input.

18. WAP that uses a function which takes a real number as its argument
and returns the sum of digits(complete including fraction parts) of this number.

19. WAP that uses a function that checks whether the given number is
divisible by 11 or not by using the algorithm which states that a number is
divisible by 11 if and only if the difference of the sums of digits at odd positions
and even positions is either zero or divisible by 11.

20. WAP that uses a function isdigit which should return a non-zero if the
given number is a digit and 0 if not.

21. WAP that uses a function isalpha which should return a non-zero if the

given number is a alphabet and 0 if not.

22. WAP that uses a function isalnum which should return a non-zero if
the given number is a alpha numeric and 0 if not.

23. WAP that uses a function isupper which should return a non-zero if
the given number is a uppercase character and 0 if not.

24. WAP that uses a function toupper which accepts a character argument
and return its equivalent uppercase character.

25. WAP that uses a function that returns the gcd(greatest common
divisor) of two integers.

26. WAP that invokes a function satis() to find whether four integers a, b,
c, d sent to satis() satisfy the equation a^3+b^3+c^3=d^3 or not. The function
satis() returns 0 if the above equations satisfied

with the given four numbers otherwise it returns -1.

27. WAP that uses a function called carea() to calculate area of a circle.
The function carea() receives radius of float type and returns area of double type.
the function main() gets radius value from the user, calls carea(),and displays the
result. the function carea() is local to main().

28. WAP that uses various functions to sum following series:
a) (1)+(1+2)+(1+2+3)+(1+2+3+4)+________ upto n terms
b) (2^2)+(2^2+4^2)+(2^2+4^2+6^2)+(2^2+4^2+6^2+8^2)+______ upto n
terms
c) 1+1/3+1/5+1/7+1/9+_______ upto n terms
d) 1+1/x+1/(x^2)+1/(x^3)+1/(x^4)+_______ upto n terms

29. WAP that receives a positive number from the keyboard and uses a
functions to obtain the prime factors of this number. for eg, prime factors of 24 are
2,2,2,and 3,whereas prime factors of 35 are 5 and 7.

30. WAP that uses a function that can compute sum of any geometric
series.

31. WAP that uses a function that generate every third integer, beginning

with i=1 and continuing for all integers that are less than 100. Calculate sum of
those integers that are evenly divisible by 5.

32. WAP that uses a function for calculating volume and surface area of a
sphere given diameter of the sphere.

33. WAP to print the largest element of an array using a function.

34. WAP that uses a function that takes a double array name and an array
size as arguments and that SWAP the first and last value in that array.

35. WAP that uses a function which will accept an array of integers as an
argument. it should find and return the smallest element in the array after sorting it.
the calling program requires the sorted array. The size of the array can be defined
to be a global constant.

36. WAP that uses a function that receive an int array, its size and a
character '+' or '-'.by default the character should be '+'.for the character '+',the
function returns the sum of positive numbers stored in the array and for the
character '-',the function returns the sum of negative numbers stored in the array.

37. WAP that reads a float array having 15 elements. the program uses a
function reverse() to reverse this array. make suitable assumptions wherever
required.

38. WAP that uses various functions to express the following algebraic
formulas in a recursive form:

a) y=(x1+x2+x3+________+xn)
b) y=1-x+(x^2)/2-(x^3)/6+(x^4)/24+_________+(-1)nx^n/n!
c) p=(f1*f2*f3*_______*ft)

39. WAP that uses a function that takes a decimal number as a parameter
and returns its octal equivalent.

40. WAP that uses a function that takes a decimal number as a parameter
and returns its hexadecimal equivalent.

41. WAP that uses a function that takes a six digit integer as a parameter.
if the number is even, then adds up its digits else multiply the individual digits and

returns the result.

42. WAP that uses a function to send all -ve elements of an array to the
end without altering the original sequence i.e. if array contains 5,-4,3,-2,6,-
11,12,-8,9 then the return array will be 5,3,6,12,9,-4,-2,-11,-8

43. WAP that uses a function for the binary search algorithm without
using recursion technique.

44. WAP that uses a function to print the length of a string.

45. WAP that uses a function to copy a string into another string.

46. WAP using following functions to reverse a string:

a) func1() to reverse string using another array.
 b) func2() to reverse string without using another array.

47. WAP that uses a function to concatenate two strings.

48. WAP that uses a function to a string into uppercase.

49. WAP that uses a function to find the first occurrence of a string into
another string.

50. WAP that uses a function to find the last occurrence of a string into
another string.

51. WAP that uses a function to compares two strings and returns 0 if the
strings are equal and -1 if the strings are unequal.

52. WAP that uses two functions, code() and decode(),that accepts a
string for an argument. the code() function should modify the argument string
adding 1 to all characters in it except the null terminator. the decode() function
restores the coded string to its original form. this program should accept a
string on the command line, print the string coded, and then print it decoded. if no
string is specified on the command line, prompt for none.
53. WAP that uses a function that accept two strings as the arguments and
compare them to find the length of the greatest common substring between the two.

54. WAP that uses a function for analyzing a line of text by examining
each of the characters and determining into which of several different categories it
falls. In particular, we want to count the number of vowels, constants, digits,
white space character and other characters.

55. WAP that uses a function that will read characters in a character type
array and write the characters backwards into another character array. assume that
text contains 80 characters.

56. WAP that uses a function to sort all the elements in an array between
the position lb and ub (ib is the lower bound and ub is the upper bound).

57. WAP that uses a function that takes a string as a parameter and returns
the frequency, of each character, in that string.

58. WAP that uses a function that takes two strings consisting of maximum
80 characters as parameters. examine both these strings and remove all the
common characters from both these strings. display the resultant string in the main
function.

59. WAP that uses a function that takes two strings as parameter and
return the position of the first occurrence of the first string in the main string and
null if not present.

60. WAP that uses function that takes a string as a parameter and replace
one or more blank between words by a single blank.

61. WAP that uses function that takes a string as a parameter and set the
string such that every sentence should start with an upper case character.

62. WAP that uses function that takes two strings as parameters and
compares these strings lexicographically. the function should return -1 or 0 or 1
depending on whether str1 is lexicographically "less than" or "equal to" or
"greater than" str2.

63. WAP that uses a function to search for a given word in a dictionary.
The dictionary is a lexicographically sorted array of characters strings. use binary
search method. you can make use of the standard c library function to compare
two strings.
64. WAP that uses a function that will accept a set os strings and output

them in increasing order of lengths of the strings and sorted alphabetically.

65. WAP that uses a function that takes a string and replace all occurrence
of the string "and" in the text by "or" and the modified text should be print by
main() function.

66. WAP that uses a function that will accept a set of names separated by
newline and check whether they are written properly. a name should begin with an
upper case alphabet, following which each string in a name should begin
with an upper case letter. the only non-alphabetic character allowed in a name are
"." And '-' (period and hyphen).

67. WAP that uses that recognizes whether a telephone number is valid or
not by checking for the following criterion. a telephone number is a 10 digit string
whose first digit is a '0' followed by 2 digits lying within 1-4.the remaining
positions may be occupied by any digit from 0-9,other than the 4th position which
can be occupied by any digit from 1-9.

68. WAP that uses a function called pr_rev() that reads a string input from
the keyboard and prints it in reverse. for example, hello would be printed olleh.

69. WAP that uses a recursive function called print_num() that has one
integer argument. it will print the number from 1 to n on the screen, where n is the
value of the argument.

70. WAP that uses a function that calculates factorial of a given number
using recursion method.

71. WAP that uses a function that calculates multiplication of two given
numbers using recursion method.

72. WAP that uses a function that prints the nth element of fibonnicci
series using recursion method.

73. WAP that uses a function that prints the entered string in reverse order
using recursion method.

74. WAP to solve the tower of hanoi problem.

75. WAP to sort the array using quick sort using recursion technique.

76. WAP that uses a recursive function to convert given decimal number
into its binary equivalent.

77. WAP that uses a function for the binary search algorithm using
recursion technique.

78. WAP that uses a function to find the determinant value of a matrix.

79. A positive number is entered through the keyboard. Write a function
to obtain the prime factors of this number. For e.g., prime factors of 24 are 2,2,2
and 3,whereas prime factors of 35 are 5 and 7.

80. A 5 digit positive integer is entered through the keyboard, write
functions to calculate sum of digits of the 5-digit number:

1) without using recursion.
 2) using recursion.

81. WAP to use the suitable function to obtain the prime factors
recursively.

82. WAP to use the suitable function to generate the first n terms of the
fibonnicci sequence recursively.

83. WAP to use the suitable function to find the binary equivalent of a
given decimal integer and display it.

84. WAP to use a function that compute the binomial coefficient n!/((k!)
(n-k)!)

85. WAP to use the function that compute the distance between two points
and use it to develop a function that will compute the area of the triangle whose
vertices are a(x1,y1), b(x2,y2),and c(x3,y3).use these function to develop a
program which returns a value 1 if the point (x,y) lies inside the triangle abc,
otherwise a value 0.

86. Given three variables x,y,z write a function to circularly shift their

values to right. in other words if x=5,y=8,z=10 after circular shift y=5,z=8 and
x=10.call the function with variables a,b,c to circularly shift their values.

CHAPTER
∞ 9 ∞

(Your Brain on Pointers)

Introduction-

A pointer is a special variable that is used to store the address of some other
variable. A pointer can be used to store the address of a single variable, array,
structure, union, or even a pointer.

Pointers - Why ?
 Using Pointers allows us to –

- Achive call by reference (i.e write functions which change their parameters)
- Handle arrays efficiently.
- Handle structures (Record) efficiently.
- Create linked lists, trees, graphs etc.
- Put data onto the heap.
- Create tables of functions for handling windows events, signals etc.
- Already been using pointers with scanf()
- Care must be taken when using pointers since there are no safety features.

As C Programming is such a low level language it is difficult to do anything
without pointers. We have already seen that it is impossible to write a function which
alters any of its parameters

Mind Wash Drill –

Pointers can also able to writing of linked lists and other such data structure.

The standard library, together with the windows, windows 95 and windows NT

Programming environments use pointers to functions quite extensively.

Problems with pointers-

One problem is that pointers have a bad reputation. they are supposed to be
difficult to use and difficult to understand.

The concept of pointers -

Every variable is stored in the memory, and each memory location has a
numeric address. The declaration of the variable-

int a = 5;

Here a is the name of the variable, the value of the variable is 5 while the
address of the variable is 100 (assumed).

Mind Wash Drill Table –

Declaring Pointers

1. Pointers are declared by using star sign “*”
2. Declare an integer: int I;

3. Declare a Pointer to an integer: int *p;

4. There is some debate as to the position of
the“ * ” int* p;

The first step is to know how to declare a pointer. This is done by using C’s

multiply character “*” (which obviously doesn’t perform a multiplication).

The “*” is placed at some point between the keyword int and the variable
name. Instead of creating an integer, a pointer to an integer is created.

Mind Wash Drill Table –

Both above and below tables will help you to understand the concept of pointers on
your fingertips.

int *pi; /* pi is a pointer to an int */
long int *p; /* p is a pointer to a long int */
Float* pf; /* pf is a pointer to a float */
char c, d, *pc; /* c and d are a char and pc is a

pointer to char */
double* pd, e, f; /* pd is pointer to a double, e and f

are double */
char* start; /* start is a pointer to a char */
char* end; /* end is a pointer to a char */

The declaration of the variable tells the compiler to -

1. Reserve space in the memory to hold the integer value.
2. Associates the name “a” with this memory location.
3. Stores the value 5 at this location.

Pointer and the indirection operator –

 The two fundamental operators used with the pointers are:

1. Address operator &
2. Indirection operator *

main()
{

 int a = 5;
 int *p; /*pointer declaration*/
 p= &a; /*copying address of variable a to the pointer p*/

*p = 10; /*indirection or use of pointer to
change the value of variable a*/

 printf(“%d”, a);
 printf(“%d”,*p);
 printf(“%d”,*(&a));

}
Mind Wash Drill - All the printf statements in the above program will give the output as
10. Since the variable p is not an ordinary variable like any other integer variable.

It is A variable which stores the address of some other variable (a in this

case). Since p is a variable, the compiler must provide memory to this variable also.
Any type of pointer gets two bytes in the memory.

int *p1;
float *p2;
char *p3;
All pointers p1, p2, p3 get 2 bytes each.

Memory and pointer -

Suppose if three pointers are declared for int, float, char. All the three pointers
will occupy 2 bytes in the memory. This is because all the memory addresses are
integer values ranging from 0 to 65536. Thus we can say that a pointer irrespective of
its type is storing the addresses as integer values and each integer requires only two
bytes.

main()
{

 int a = 5,*p1;
 float b=2.5,*p2;
 char c=’a’,*p3;
 p1= &a;

p2 = &b;
 p3=&c;
 printf(“%d”,sizeof(p1));
 printf(“%d”,sizeof(p2));

 printf(“%d”,sizeof(p3));
} output: 2 2 2

Pointers and addresses -

main()
{

 int a = 5;
 int *p;
 p= &a;

*p = 10;
 printf(“%d”, p); /*prints the address in pointer p as integer */
 printf(“%u”,p); /*prints the address in pointer p as unsigned integer */
 printf(“%x”,p); /*prints the address in pointer p as hexadecimal */
 printf(“%x”,p); /*prints the address in pointer p as hexadecimal */
 } output: -12, 65524, fff4, FFF4

Let us evaluate the output. The first answer is a negative value this is because
the range of pointers is from 0 to 65536 and the variables are allocated memory from
top to bottom i.e. from 65536 then 65535, 65534 and so on until 0.

The variable a is stored at address 65524 and if we print the address of

variable a which is stored in pointer p using format specifer %d a negative value is
printed because the address exceeds the int limit.

if %u is used the address is printed in the form of unsigned integer. %x or %X
is used to print the address in hexadecimal form, the only difference is that %x will use
alphabets in lowercase while %X will use uppercase alphabets.

Pointers Expression:-

Like any other variables, pointer variables can be used in expressions. In a
program all the following operations are valid.

1. C allows us to add or subtract integers from pointers.

 sum= sum +*p1;

2. Also short hand operators are allowed
 sum+=*p1;
 ans = *p1++;

This will cause the pointer p1 to point to the next value of its type and the dereference
the value.

Let us use an e.g. to illustrate the point:

main()
{

 int a[5]={10,20,30,40,50},*p;
 p=a /*address of array can be pointed into the pointer without

the use of & operator*/
printf(“%d,”,*++p); /*dereferencing the next address*/
printf(“%d”,++*p); /*dereferencing the address and adding 1 to

the element */
}

output: 20, 21

3. As well as to subtract one pointer from another.

*p1--;
main()

{
int a[5]={10,20,30,40,50},*p;
p=a;
printf(“%d,”,*++p); /*dereferencing the next address i.e. index 1*/
printf(“%d”,*p--); /*dereferencing the index 1 and then the postfix will

affect*/
 printf(“%d”,*p); /*dereferencing the pointer*/

}

output: 20, 20, 10

4. If p1 and p2 are both pointers to the same array, then p2-p1 gives the
 number of elements between p1 and p2

 *p3 = *p2 - *p1;

5. Two pointers can also be compared such as --
p1>p2
p1= = p2
p1! = p2.

These comparisons are useful only while using string or arrays.

6. Two pointers cannot be multiplied divided or added.

Mind Wash Drill –

A null pointer is a special pointer value that is known not to point anywhere. It
means that no other valid pointer, to any other variable or array cell or anything else,
will ever compare equal to a null pointer.

Another way to use a null pointer is, by using any one of the standard header

files, including <stdio.h>, <stdlib.h>, and <string.h>. To initialize a pointer to a null
pointer, you might use code like-

 #include <stdio.h>
 int *p = NULL;

And to test it for a null pointer before inspecting the value pointed to you might use code
like -
 if(p != NULL)
 printf("%d\n", *p);

It is also possible to refer to the null pointer by using a constant 0, and you will
see some code that sets null pointers by simply doing

 int *p = 0;

 Furthermore, since the definition of “true”' in C is a value that is not equal to 0,
you will see code that tests for non-null pointers with abbreviated code like -
 if(p)
 printf("%d\n", *p);

This has the same meaning as our previous example; if(p) is equivalent to if(p
!= 0) and to if(p != NULL).

Pointers to pointers –

Pointers store the address of a variable, similarly the address of a
pointer can also be stored in some other pointer.
main ()
{

 int a=5;
 int *p1; /*pointer to an integer*/
 int **p2; /*pointer to pointer to an integer*/
 int ***p3; /*pointer to pointer to pointer to an integer*/
 p1= &a;
 p2= &p1;
 p3 =&p2;
 printf(“%d”,a); /*output = 5*/
 printf(“%d”,*p1); /*output = 5*/
 printf(“%d”,**p2); /*output = 5*/
 printf(“%d”,***p3); /*output = 5*/

printf(“%u”,*p2); /* address of p1 will be printed*/
}

Pointers and Array:

When an array is declared, the compiler allocates a base address and sufficient
amount of storage to contain all the elements in the array in continuous locations.

The base address is the location of the first element (index 0) of the array.

Suppose we declare the array a as follows:

static int a[5]={10,20,30,40,50};

Suppose the base address of the array a is 100 and because the integers require

two bytes each.

[0] [1] [2] [3] [4]
10 20 30 40 50
100 102 104 106 108

The name a is defined as a constant pointer pointing the first element a[0] and therefore
the value of a is 100, the location where a[0] is stored.

That is a is equal to &a[0] is equal to100.

If we declare the pointer p as an integer pointer, then we can make the pointer p to point
to the array a –

p= a;
 or
p = &a[0];

Now we can access every value of this array a using p++ to move from one
element to another. The relationship between p and a is shown below:

p is equals to &a[0]; (=100)
p+1 is equals to &a[1]; (=102)
p+2 is equals to &a[2]; (=104)
p+3 is equals to &a[3]; (=106)
p+4 is equals to &a[4]; (=108)

When handling an array we can either use the array index or pointers to access array
elements. Thus we can point to the third element of the array as:

a[2] or *(p+2) (remember the array index starts from 0).

Pointers and Functions-

As discussed earlier the function passing the array as a parameter uses call by
reference mechanism.

WAP (Write a program) to swap two numbers.

Using call by value:
void swap(int ,int);
main()
{
 int a,b;
 printf(“Enter two numbers”);
 scanf(“%d %d”,&a,&b);

Using call by reference:
void swap(int * ,int*);
main()
{
 int a,b;
 printf(“Enter two numbers”);
 scanf(“%d %d”,&a,&b);

 swap(a,b);
 printf(“%d %d”,a,b);
 getch();
}
void swap(int, int)
{
 int x,y,t;
 t=x;
 x=y;
 y=t;
}

 swap(&a,&b);
 printf(“%d %d”,a,b);
 getch();
}
void swap(int * p1, int * p2)
{
 int t;
 t=*p1;
 *p1=*p2;
 *p2=t;
}

In the call by reference-

The function prototype is declared as pointers.
The dereference pointers are used in function definition.
When the function is called, the addresses are passed as actual arguments.

Common Errors -

 A pointer contains garbage address until it is initialized. If we try to
dereference this pointer then it will not give any error, but it will jump to that address
and assign the value in that address. This is a logical error which a compiler can not
detect.

Memory Allocation -

1. Static Memory Allocation.
2. Dynamic Memory Allocation.

The conventional way to use an array is by declaring the array with its size and

since the size of array must be a constant so it leads to either wastage or shortage of
memory because the array is allotted memory at the time of compilation of the program.

Mind Wash Drill –

The memory allocated at the time of compilation is called static memory. These
problems can be overcome by the use of pointers. Pointers can be used to allocate
memory at the time of execution of the program, called dynamic memory.

Thus dynamic memory can be described as the process of allocating memory
at run time. C does not inherently have this facility but they can be included in the
program using the header file alloc.h

Functions Task
malloc()

Allocates the requested number of
bytes and returns the starting address
to a pointer.

calloc() Allocates the requested number of
bytes, initializes them with zero and
returns the starting address to a
pointer.It allocates the non continous
memory.

realloc() Reallocates the size by increasing or
decreasing the no. of bytes and
returns the starting address to a
pointer.

free() Frees previously allocated space.

Allocating a block of memory(malloc) -

A block of memory may be allocated using the function malloc. The malloc
function reserves a block of memory of specified size and returns a pointer of type void.
This means we can assign the base address of the block to any type of pointer. The
general syntax of malloc is:

P= (cast type*) malloc(byte size);

Now let us see an e.g.:

P=(int*)malloc (10 * sizeof(int));

Here the function malloc returns an integer type pointer p to an area of memory which
has the capacity to store 10 integer numbers. Similarly, the statement

P=(char*)malloc(10*sizeof(char));

Or
P=(char*)malloc(10); /*remember each charcter uses one byte*/

Allocates 10 bytes of space for the pointer p of character type.

This can be illustrated as:

Space to store 10 characters

Address of first byte

malloc can be used to allocate the space for complex data types such as structure:

str_p= (struct store *)malloc(sizeof(struct store));
where str_p is a pointer of type struct sore.

Mind Wash Drill –

malloc is used allocate the memory of contiguous bytes. The request can fail if
the memory space is not sufficient to satisfy the request. If it fails, it returns a NULL.

Allocating multiple blocks (calloc) -

Calloc is also a memory allocation function which is generally used to allocate
memory for array and structure. malloc is used to allocate a single block of storage
space, calloc allocates multiple blocks of storage, each of same size and initializes them
with zero. The general syntax of calloc is:

P= (cast type*) calloc(n, array size);

Now let us see an e.g.:
P=(int*)calloc (10 , sizeof(int));

The above statement allocates contiguous space for 10 blocks, each of size 2

bytes(since int requires two bytes).

All the bytes are initialized to zero and a pointer gets the starting address of the

block allocated. Like malloc here also if the memory request cannot be fulfilled a
NULL is returned.

Altering the size of block -

It is likely that we discover later, that the previously allocated memory is not
sufficient and additional space would be required or the allocated memory is quite large
than that needed.

In both these cases the size of the block has to be altered this can be achieved

by using function realloc (reallocating memory). The general syntax of relloc is:

P= relloc(P, new size);

Mind Wash Drill –

The new size can be larger or smaller than the previous one. Now let us see
an e.g. suppose the block for storing 10 integers was allocated using the malloc as :

P=(int*)malloc (10 * sizeof(int));

Now to alter the size so that 5 more numbers can be stored the statement would

be:

P= relloc(P, 15);

The function allocates a new memory space of size 15 to the pointer P and returns a
pointer to the first byte of the new block.

Mind Wash Drill –

Also remember that the new memory block may or may not begin at the same

place as the old one.

In such a case it creates a new memory space at some other place, copies all

the old data there and returns the block address to the pointer.

Releasing the used space:

If the variables are declared at compile time they are destroyed according to

their storage classes, but if the dynamic allocation is used it is the duty of the
programmer to release the space if not in use.

It is also necessary if the storage space is limited. We can release the memory

space if the data at that space is not required by using the function free as: free(p);

1. WAP to extract a substring from a string.

#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{

 char str[20], news[20];
 char *s, *t;
 int pos, n, i;
 printf("Enter the string:");
 scanf("%s",str);
 printf("Enter the position and number of characters to

extract:");
 scanf("%d%d",&pos,&n);
 s=str;
 t=news;
 if(n= =0)
 n=strlen(str);
 s=s+pos-1;
 for(i=0;i<n;i++)
 {
 *t=*s;
 s++;
 t++;
 }
 *t='\0';
 printf("The substring is: %s\n",news);
 getch();

}

2. Write a program to sort all the elements of a 4x4 matrix.

 int mat[4][4], *arr, i, j, k, t;

 printf(“Enter the elements of 4x4 matrix:”);
 /*matrix input*/
 for(i=0; i<4; i++)
 {
 for(j=0; j<4; j++)
 {
 printf(“Enter element %d %d”,i+1,j+1);
 scanf(“%d”,&mat[i][j]);
 }
 }
 /*sort the elements of the matrix*/

arr = mat; /*Base address of the matrix array*/
/* Print the matrix as entered using pointer*/
printf(“\nThe matrix formed is…\n”);

for(i=0; i<15; i++)/*number of passes*/
{
 for(j=i+1; j<16; j++)
 {
 if(*(arr +i)>*(arr+j))
 {
 t = *(arr+i);
 *(arr+i)= *(arr+j);
 *(arr+j)=t;
 }
 }
}
/*print the sorted matrix*/
printf(“\n The sorted matrix is:\n”);
for(i=0; i<4; i++)
{
 for(j=0; j<4; j++)
 printf(“%d”,mat[i][j]);
 printf(“\n”);

 }

printf(“\n\nPress any key to exit…”);
getch();

}

3. WAP to input any string and delete the extra blanks spaces present in
the same.

#include<stdio.h>
#include<conio.h>
#include<string.h>
main()
{
 static char s1[50];
 char s2[50];
 char *s, *t;
 int i, l;
 printf(“Enter a string”);
 gets(s1);
 s=s1;
 t=s2;
 l=strlen(s);
 for(i=0;i<=l-1;i++)
 {
 if(*s= = ‘ ’)/*check for a blank*/
 {
 if(*(s+1)!=' ')
 {
 *t=*s;
 t++;
 }
 s++;
 }
 else
 {
 *t=*s;
 t++;
 s++;
 }
 }
 *t='\0';
 printf("Original Statement:%s\n",s1);
 printf("Modified Statement:%s",s2);

 getch();
}

4. Write a program to concatenate 2 strings using pointers. Donot use
 strcat function.

main()
{
 char s1[20],s2[20],*p1,*p2;
 /* Input 1st string*/
 printf("Enter 1st string");
 gets(s1);
 /*Input 2nd string*/
 printf("Enter 2nd string");
 gets(s2);

 /*Assigning address of strings in two pointers*/

 p1 = s1;
 p2 = s2;

 /*Moving pointer 1 to the end of 1st string*/

 while(*p1 != '\0')
 p1++;

 /* Adding 2nd string to the end of 1st string*/

 while(*p2 != '\0')
 *p1++ = *p2++;

 /* Adding NULL to the end of string*/

 *p1 = '\0';

 /*Output string after concatenation*/
 puts(s1);
 getch();
}

5. WAP that receives the month and year from the keyboard as integers and prints the

calendar in the following format.
static char *months[]= {

 “January”,
 “February”,
 “March“,
 “April“,
 “May”,
 “June”,
 “July”,
 “August”,
 “September”,
 “October”,
 “November”,

“December”
 };
main()
{
 static int days[12]={31,28,31,30,31,30,31,31,30,31,30,31};
 long int ndays, ldays, tydays, tdays;
 int d, i, m, fday, y;
 char ch;
 clrscr();
printf(“Enter year(1900 onwards)& month (number):”);
scanf(“%d %d”,&y,&m);
 ndays = (y-1)*365;
 ldays = (y-1)/4-(y-1)/100+(y-1)/400;
 tdays = ndays+ldays;
 if((y%100==0&&y%400)||(y%4==0&&y%100!=0))
 days[1]=29;
 else
 days[1]=28;
 d= days[m-1];
 tdays = 0;
 for(i=0; i<m-2; i++)
 tydays = tydays + days[i];

 tdays = tydays + tdays;
 fday = tdays%7;
 cal(y, m, fday, d);
}

cal(int yr, int mo, int fd, int da)
{
 int i, r, c;
 char a;

 clrscr();
 gotoxy(25,2);
 printf(”%s %d”,months[mo-1],yr);

gotoxy(5,5);
printf(“--”);
gotoxy(10,6);

 printf(“Mon Tue Wed Thu Fri Sat Sun”);
 gotoxy(5,7);
 printf(“--”);

 r = 9;
 c=11+6*fd;
 for(i=0; i<=da; i++)
 {
 gotoxy(c,r);
 printf(“%d”,i);
 if(c<=41)
 c=c+6;
 else
 {
 c=11;
 r=r+1;
 }
 }
 gotoxy(5,15);
 printf(“--”);
 printf(“\n\n\n\n\nPress any key to exit…”);
 getch();
}

6. Write a program that will read a line and delete from it all occurrences of the word
‘the’.

main()
{
 char str[80], str2[80];
 char *s,*q,*p;

 int i;
 clrscr();
 printf(“\nEnter a sentence not more than 80 chars long:\n”);
 gets(str);

s = str; /*Base address of the string*/
p = str2; /*Base address of new string*/

 while(*s)
 {
 q = s;
 if(*s==’t’|| *s==’T’)
 {
 s++;
 if(*s==’h’)
 {
 s++;
 if(*s==’e’)
 ;
 else
 {
 for(i=0; i<=2;i++)
 *p++=*q++;
 }
 }
 else
 {
 *p++=*q++;
 s--;
 }
 }
 else
 *p++=*s;
 s++;
 }
 *p=’\0’;

printf(“\n\nSentence after deleting all occurrences of ‘the’ is:\n”);
 puts(str2);
getch();

}
What would be the output of the following program:

1. char far *s1,*s2;
printf(“%d
%d”,sizeof(s1),sizeof(s2));

Output: 4 2

2. Are the expressions *p++ and
++*p same?
Output: No.
*p++ increments the pointer and not
the value pointed by it, whereas
++*p increments the value being
pointed by p.

3. Can there be another statement
which does the same job as ++*p?

Output: (*p)++

4. What would be the
equivalent
pointer expression for
referring the
same element as a[i][j][k][l]?

Output:*(*(*(*(a+i)+j)+k)+l)

5. What would be the output of the
 following program:

int a[]={12, 13, 14, 15, 16};
printf(“%d %d %d”, sizeof(a),
sizeof(*a), sizeof(a[0]);

Output: 10 2 2

6. What will be the output of
the

following program assuming that the
array begins at location 1002.

int a[3][4]= {1, 2, 3, 4,5, 6, 7, 8,
 9, 10, 11, 12};

printf(“%u %u %u”, a[0]+1, *

26. How would you dynamically
allocate 2-D array?
Output:
#include<alloc.h>
#define MAXROW 10
#define MAXCOL 10
main()
{
 int *p, i, j;

p=(int *) malloc (MAXROW *
MAXCOL * sizeof(int));

 /*input in matrix*/

for(i=0;i<MAXROW;i++)
 {

for(i=0;i<MAXCOL;i++)
 {
 p[i*MAXCOL+j]=i;

printf(“%d”,p[i*MAXCOL+j]);
 }
 printf(“\n”);
 }
}

27.How would you
dynamically
allocate a 2-D array of
integers such
that we are able to access
any element
using 2 subscripts, as in a[i]
[j]?

Output:
#include<alloc.h>
#define MAXROW 10
#define MAXCOL 10
main()
{

(a[0]+1), *(*(a+0)+1));
Output: 1004 2 2

7.In the following program how will
you print 50 using p?

main()
{
int a[]={10, 20, 30, 40, 50};
 char *p;
 p=(char*)a;
}

Output:printf(“%d”,*((int*)p+4));

8.In the following program
add a
statement in the function fun()
such
that address of a gets stored in
j

void fun(int**);
main()
{
 int *j;
 fun(&j);
}
void fun(int **k)
{
 int a=10;
/*add statement here*/
}

Output: *k=&a;

9 . How will you declare an
array of
three function pointers where
each
function receives two ints and
returns a float?

Output: float(*a[3])(int,int);

10.Would the following program

int **p, i, j;
p=(int **) malloc (MAXROW
* sizeof(int*));

 for(i=0;i<MAXROW;i++)
p[i]=(int *)malloc(MAXCOL *
sizeof(int));

 for(i=0;i<MAXROW;i++)
 {

for(i=0;i<MAXCOL;i++)
 {

p[i][j] = i;
printf(“%d”,p[i][j]);

 }
 printf(“\n”);
 }
}

28.How would you
dynamically
allocate a 2-D array of
integers such
that we are able to access
any element
using 2 subscripts, as in a[i]
[j]? Also
the rows of the array should
be stored
in the adjacent memory
locations.

Output:
#include<alloc.h>
#define MAXROW 3
#define MAXCOL 4
main()
{
 int **p, i, j;
p=(int **) malloc (MAXROW *
sizeof(int*));

give a compilation error or
warning?

 float i=10, *j;
 void *k;
 k=&j;
 j=k;
 printf(“%f”,*j);

Output: No. here no typecasting is
required while assigning the value
to and from k because conversions
are applied automatically when
other pointer types are assigned to
void *.

11.Would the following program
 compile?

main()
{
 float i=10, *j;
 void *k;
 j=k=&a;
 j++;
 k++;
 printf(“%u %u”, j, k);
}

Output: No. An error will be
reported in the statement k++ since
arithmetic on void pointers is not
permitted unless the void pointer is
appropriately typecasted.

12. Would the following
program code compile successfully?
printf(“%c”, 7[“Computer”]);
Output: Yes it will print r of
Computer.

13. What is a null pointer?

p[0]=(int *) malloc (MAXROW *
MAXCOL* sizeof(int));

 for(i=0;i<MAXROW;i++)

p[i]=p[0] + i * MAXCOL;

 for(i=0;i<MAXROW;i++)
 {

for(i=0;i<MAXCOL;i++)
 {
 p[i][j] = i;

printf(“%d”,p[i][j]);
 }
 printf(“\n”);
 }
}
29.Would the following code work
all the time:

main()
{
 char *p;
 gets(p);
 printf(“%s”,p);
}

Output: No, since p is an
uninitialised pointer it must be
pointing at some unknown location
in memory. The string that we type
would get stored at the location to
which p is pointing thereby
overwriting whatever is present at
that location.

30.The following code is
improper
though it may work
sometimes. How
would you improve it:

Output: For each pointer type C
defines a special pointer value
which is guaranteed not to point to
any object or function of that type.
Usually, a null pointer constant is
used for representing a null pointer
is the integer 0.

14. Is the NULL pointer same as the
uninitialised pointer?

Output: No.

15. In which header file is the
NULL macro defined?

Output: In files <stdio.h>

16. What is the difference
between a
null pointer, a NULL macro,
the ASCII
NUL character and a null
string?

Output: A null pointer is a pointer
which does not point anywhere.
A NULL macro is used to represent
the null pointer in source code. It
has a value 0 associated with it.
The ASCII NUL character has all its
bits as 0 but doesn’t have any
relation with null pointer.
The null string is just another name
for an empty string “”.

17.What will be the output of the
following program?

#include<stdio.h>
main()

main()
{
char *p1= “Matrix”;
char *p2= “Computers”;
strcat(p1,p2);
printf(“%s”,p1);
}

Output:
main()
{
char p1[25]= “Matrix”;
char *p2= “Computers”;
 strcat(p1,p2);
 printf(“%s”,p1);
}

31.What would be the output of the
second printf() in the following
program:

#include<alloc.h>
main()
{
 int *p;
p=(int*)malloc(20);
printf(“%u”,p);
/*suppose it prints 1314*/
 free(p);
 printf(“%u”,p);
}

Output: 1314
32.T o free() we only pass
the pointer
to the block of memory
which we want
to deallocate. Then how
does free()
know how many bytes it
should
deallocate?

Output: In most implementations

{
 int a, b=5;
 a= b+NULL;
 printf(“%d”,a);
}

Output: 5

18. int a[] = {10,20,30,40,50};
 int *j;
 j = a;
 j = j+3;
 printf(“\n%d”,*j);
Output: 40

19. float a[] =
 {3.24,1.5,2.5,3.5,4.5,5.5};
 flaot *j,*k;
 j = a;
 k = a+4;
 j = j*2;
 k= k/2;
 printf(“\n%d %d”,*j,*k);
Output:Error. Because
multiplication and division are not
allowed on pointers.

20. What will be the output of the
 following program?

#include<stdio.h>
main()
{
 printf(“%d %d”,
sizeof(NULL), sizeof(“”));
}

Output: 2 1

21.How many bytes are occupied by
 near, far and huge pointers?
Output: The near pointer is 2 bytes
long and the far and huge pointers

o f malloc() the number of bytes
allocated is stored adjacent to the
allocated block. Hence it is simple
for free() to know how many bytes
to deallocate.

33.What would be the output of the
 following program:

#include<alloc.h>
main()
{
 int *p;
p=(int*)malloc(20);

printf(“%d”,sizeof(p));
 free(p);
}

Output: 2
34.What is the difference between
malloc() and calloc() functions?

Output: As against malloc(),
calloc() needs two arguments, the
number of elements to be allocated
and the size of each element.

For example,

p=(int*) calloc(10,
sizeof(int));

would allocate space for a 10
integer array. Additionally,
calloc() would initialize each
element with 0.

35.How much maximum memory
can be allocated in a single call to
malloc() ?
Output: 64 KB.

are 4 bytes long.

22.What would be the output of the
 following program:

char *f();
main()
{
 char *s;
 s=f();
 printf(“%s”,s);
}
char * f()
{

char string[30];
strcpy(string, “Matrix Computers”);

return(string);
}

Output: The output is
unpredictable since string is an auto
type of array and would die when
the control goes back to main().
Thus s would be pointing to an array
which no longer exists.

23.What is the solution of the above
 problem?
Output:char *f();

main()
{
 char *s;
 s=f();
 printf(“%s”,s);
}
char * f()
{
 static char string[30];

strcpy(string, “Matrix Computers”);
 return(string);
}

36.What should be the output of the
following program?

main()
{

char a[]= “Matrix Computers”;
char *b= “Matrix Computers”;
printf(“%d %d”, sizeof(a),
sizeof(b));
printf(“\n%d %d”, sizeof(*a),
sizeof(*b));

}
Output:16 21 1

37.For the following statements
would a[3]nd p[3] fetch the same
character?

char a[]= “Matrix”;
char *p= “Matrix”;

Output: Yes

38.When are char a[] and char *a
treated as same by the compiler?

Output: When using them as
formal parameters while defining a
function.

39. Would the program
compile
 successfully:

main()
{
char a[]= “Matrix”;
char *p= “Computers”;
a= “Computers”;
p= “Matrix”;
printf(“%s %s”, a, p);
}

Output: No, because we may
assign a new string to a pointer but

24.Does there exist some other
solution of the above problem?
Output:

char *f();
main()
{
 char *s;
 s=f();
 printf(“%s”,s);
 free(s);
}
char * f()
{
 char *p;
 p=(char*)malloc(30);

strcpy(p, “Matrix Computers”);
 return(p); }

25.How would you dynamically
 allocate 1-D array?
Output: #include<alloc.h>

#define SIZE 10
main()
{
int *p,i;
p=(int *) malloc (SIZE *
sizeof(int));

/*input in array*/
 for(i=0;i<SIZE;i++)

{
p[i]=i;

/*printing elements*/
printf(“%d”,p[i]);

}
 }

not to an array.

40.What does the following
declaration mean:

int (*p)[10];
Output: p is a pointer to an array
of 10 integers.

41.What will be the output of the
following program:

main()
{
char *s[]={“Frogs”, “Do”,
“Not”, Die”, “They”,
“Croak!”};

printf(“%d %d”,sizeof(s),
sizeof(s[0]);
}

Output: 12 2

42.What is the difference in the
following declaration:

char *p= “Matrix”;
char a[]= “Matrix”;

Output: Here a is an array big
enough to hold the string and ‘\0’
following the string. Individual
characters within the array can be
changed but the address of the
array will remain same.
On the other hand, p is a pointer,
initialized to point to a string
constant. The pointer p may be
modified to point to another string,
but if you attempt to modify the
string at which p is pointing the
result is undefined.

43.If int s[5] is a one-
dimensional
array of integers, which of
the
following refers to third
element in
the array?

 a) *(s +2)
 b) *(s +3)
 d) s + 3
 e) s + 2

Output: a) *(s +2)

CHAPTER
∞ 10 ∞

(Your Brain on Structure & Union)
 (Enum, Bit Fields, Typedef)

Introduction-

Arrays are the preferred method of storing objects of the same data type. In
addition to array three more derived data types that can be used to store information:
structure, unions, bit fields, typedef and enumerator. Unlike array these can be used to
store the data of same or different type.

Structure -

A Structure can be defined as a derived data type which can represent several
different types of data in a single unit. Each individual data item within the structure is
referred to as member.

Structure is the method of packing the data of different types to organize the

data in a more meaningful way. A structure definition creates a format that may be used
to declare structure variable.

A Structure definition is specified by using the keyword struct. This is
followed by braces enclosing the members and there data types.

e.g.:
 struct student /*definition of structure*/
 {

int roll; /*members*/
 char name [10];
 float per;
 }s1,s2; /*objects or variables of the structure student*/

The members of the structure are not variables and so no memory is allocated
to them. They are allowed space in the memory only when the objects are declared.
(e.g. s1 and s2).

Mind Wash Drill-

The keyword struct declares a structure student which holds three different
details namely roll, name, marks. These fields are called members or elements of a
structure. This structure is named as student, the name is called as structure tag.

Variable/Object declaration -
 struct student s1,s2;

The variables of the structure can be declared along with the definition as :

struct student
{

 int roll;
 char name[50];
 float marks;

}s1,s2;

Points to be noted about structure -

1. The structure definition ends with a semicolon.

2. While the entire definition is considered as a statement, each member
is declared independently for its name and type in a separate statement inside the

definition (also called as template)

3. The tag name can be declared with the structure definition or even later
in the main function.

4. The memory is allotted to the variables and not to the members of a
 structure.
Using the members -

In an array we can access individual elements of the array using a subscript
operator [].

Structures use a different scheme. It uses a dot or period operator (.). So to

refer to marks in the above structure:

s1.marks

Here the variable name is given before the dot and the name of the member after that.

Mind Wash Drill-

The elements of a structure are always stored in contiguous memory locations.

struct student
{

 int roll;
 char grade;
 int marks;

};
main()

{
 struct student s1={2, ‘A’, 89};
 printf(“Address of roll=%u”,&s1.roll);
 printf(“Address of grade=%u”,&s1.name);
 printf(“Address of marks=%u”,&s1.marks);

}

Here the output of the program:
Address of roll=65518
Address of grade=65520
Address of marks=65521

S1.roll s1.grade s1.marks
2 A 89
65518 65520 65521

Structure using array -

struct student
{

 int roll;
 char name[50];
 int marks;

};
main()

{
 struct student s1;
 printf(“Enter the data for student:”);
 scanf(“%d %s %d”,&s1.roll,s1.name,&s1.marks);

printf(“Rollnumber=%d,\nname=%s\nmarks=%d”,s1.roll,
s1.name,s1.marks);

}

In the above structure definition an array is used to store the name of the

student. While the scanf always contains & before variable name but the string does not
have & operator.

Array of structures -

struct student
{

 int roll;
 char name[50];
 int marks;

}s[10];

The above definition uses an array of objects to store the data of 10 students

Structure Initialize -

 struct student s1={1,”ajay”,75.5};
 struct student s2[3]={{1,”ajay”,75.5}, {2,”vijay”,75.5},{1,”akash”,75.5}};

Mind Wash Drill-

If we initialize only some members of a structure then others will be
automatically initialized to zero.

Structures within Structure (Nested Structure) -

Structure within structure is called nesting of structures. When object of a structure is
the member of another structure.

struct date
{

 int d;
 int m;
 int y;

};
struct employee

{
 int id;
 struct date dob;
 struct date doj;

}e1;
main()

{
 printf(“Enter id of a employee”);
 scanf(“%d”,e1.id;
 printf(“Enter date of birth”);
 scanf(“%d%d%d”,&e1.dob.d, &e1.dob.m,&e1.dob.y);
 .

.
}

Mind Wash Drill- In the above example we can also define the structure date inside the

definition of structure employee.

Structure and Pointers -

struct student s1,*p;
p = &s1;
s1.roll = 5;
(*p).roll = 7;

 or
p->roll = 7;
printf(“%d”,s1.roll); /* This will print 7.

Mind Wash Drill-

Dot(.) operator is used to when we access a member of a structure through an object.
(Object.member)

Arrow(->) operator is used when we access a member of structure through a pointer.
(Pointer->member)

struct box
{

 int feet;
 int inches;

};
void swap(struct box *, struct box *)
main()

{
 struct box b1,b2;
 clrscr();
 /*Input first object*/
 printf(“Enter height in feet & inches of box 1”);
 scanf(“%d%d”,&b1.feet,&b1.inches);
 /*Input second object*/
 printf(“Enter height in feet & inches of box 2”);
 scanf(“%d%d”,&b2.feet,&b2.inches);
 swap(&b1,&b2);

printf(“After swap height of 1ST box- %d feet %d inches\n”,b1.feet, b1.inches);

printf(“After swap height of 2ND box- %d feet %d inches\n”,b1.feet, b1.inches);
getch();

 }
 void swap(struct box *p1, struct box *p2)
 {
 int t;
 /*swapping feets*/
 t = p1->feet;
 p1->feet = p2->feet;
 p2->feet = t;
 /*swapping inches*/
 t = p1->inches;
 p1->inches = p2->inches;
 p2->inches = t;
 }
Union -

Union are also derived data types. They are also used to group together a
number of variables. But the difference is that all the members of the union share the
same memory location, therefore only one member of the union is can store valid value
at one time. A union is a variable that is used to store data of different types at different
times.

The union is much like a structure. The different variables defined in the union

are called members of the union. They need not be of the same data type. If one member
contains a value and another member is assigned a value then the first value will be
overlapped by the second value. The compiler allocates enough memory to hold the
largest member of the union. Since the memory space is shared, this is a way to save the
memory.

Syntax:
 union <union type name>
 {
 <type> <variable names> ;

 ...
 } [<union variables>] ;
e.g.:

union data
{

 char c; /*member declaration*/
 int i;
 long l;
 float f;

}d1,d2;

Mind Wash Drill-
In the above example d1 and d2 will get 4 bytes each because the highest

member of the union is of 4 bytes. If there are more than one highest byte member then
only on will be considered.

Mind Wash Drill- In the above declaration, union is a keyword.

Mind Wash Drill- The dot operator is used to access the members of the union. For e.g.
to access the members of the above union

d.c= ‘a’;
d.i= 10;
d.l= 65534;
d.f= 72.456;

If you store something in the f member of this union and then access the i member, the
value of i is unpredictable.

Difference between Structure and Union -

 Structure Union
1. Keyword is struct. Keyword is union.
2. Object of a structure will get

memory equal to the sum of
memory of all the members.

Object of a union will get
memory equal to the memory of
highest member of the union.

3. All the members can be used
simultaneously.

Only one member can store valid
value.

Enumerated Data Type -

An enumerated data type is a data type with user specified constant values. The

syntax is similar to that of structure or union: It is used to define constants. The keyword
is enum. It is followed by enumerator type. A list of names that are permissible values
for this data type. The values are enclosed in braces and separated by commas.

Examples –

1.
enum bool{FALSE ,TRUE}; /*false
and true are constants with values 0 & 1. this
numbering is done automatically*/

 enum bool b1,b2; /*objects of enum bool*/
 b1=FALSE;
 or
 b1=TRUE;

 2.
 enum dow{SUN,MON,TUE=5,WED,THU,FRI,SAT};

/*automatic numbers will be SUN=0,MON=1,TUE=5,WED=6 & so
on*/

3.

/*enum declaration*/
enum color{blue, green, red, yellow};
enum color c1,c2;

/*assigning values*/
c1 = red;
c2 = green;

4.

/*enum declaration*/
enum color{blue, green, red, yellow}c1,c2;

/*assigning values*/
c1 = red;
c2 = green;

5. enum color {blue=10, green=15, red=25, yellow=30};
If we do not want default values 0,1,2… then we can itself assign the
values.

Declaring an enumerated type does not allocate storage but only describes the

user specified data type and associated integer constants with the values given in the
braces. By default, the first value assigned value 0, second value with 1, third value
with 3,and so on.

Mind Wash Drill- We can give duplicate values also in a union.

Mind Wash Drill- We can provide floating numbers in a union.

Bit Fields -

If in a program a variable is to store only two values1 or 0, we need only one
bit to store it. Similarly if the variable is to store values from 0 to 3, then only two bits
are required because the binary of all the numbers from 0 to 3 is of two bits. And if the
values vary from 0 to 7, then four bits are required.

But if we store an integer then 2 bytes will be used, thus wasting a lot of

memory because there is no data type which deals with the bits. However when there
are several variable having values which can be packed into a single memory location,
we can use ‘bit fields’.

Suppose we want to store the following data about an member of a club. Each

member can have following data:

1. Male or Female.
2. Married or Un Married or Widow or Divorce.
3. Have any one of the eight hobbies (Cricket, Football etc.).
4. Can choose from any of the sixteen schemes (Yearly scheme,

monthly scheme, etc.)

If we store 0 or 1 in gender in place of Male, Female then this will save some

bytes. In the same way the other values can be converted in numbers.

This means we need one bit to store gender, two bits to store, marital status,

three bits to store hobby, four bits to store the schemes. Thus in together we need 10 bits
altogether, so we can pack all this above information in two bytes.

Thus the declaration will be a follows:

struct employee
{

 int gender:1;
 int mar_status:2;
 int hobbies:3;
 int scheme:4;

};

The colon in the above declaration tells the compiler that we are talking about

bit fields and the number after it tells the no. of bits allotted to each variable.

Typedef -

C provides the typedef construct, which lets the programmer provide a
synonym (same name) for either a built in or user defined data type. Typedef is like a
nick name given to a data type. The program becomes easy to trace and understand. The
general use of typedef is:

 typedef oldtypename newtypename;

 e.g.
typedef int age;

Here the age becomes a synonym for int. So we can substitute age for int.

age a1,a2;
 or
int a1,a2;

Now age can be used to define the int variable a1 and a2.

Mind Wash Drill-

In the syntax of typedef. First comes the keyword typedef, then the data type,
and last the user provided name for this data type.

A typedef is used only to create a synonym for a data type. In a typedef, no

variables may be defined and no storage is allotted.

For eg. it is an error to write:
Typedef int age a1,a2; /*invalid*/

Typedef using structure:
typedef struct student
{

 int roll;
 char name[50];
 int marks;

}st;
main()
{

 st s1,s2;
 or
 struct student s1,s2;
 }

The typedef name can be the same as the tagname of the structure.

Typedef and code portability:

The typedef can be used to promote code portability.

Suppose that we have an application that assumes that all integers are represented by
16-bit storage cells. On computer system A, an int may use 32 bits, on another system B
int may use 16 bits.
Thus,

/* on computer system A*/
/*integer has 16 bits*/
typedef short int INTEGER;

/*on computer system B*/
/*integer has 32 bits*/
typedef int INTEGER;

Throughout the program we may use INTEGER instead of short int in the declaration of
variables. This typedef could be put in a file such as port.h then included in the files that
need integer variables.

Fill in the Blanks -

1. __ is a heterogeneous collection of variables grouped
as a single unit.
2. __ gives
a blue print for a structure.
3. Memory is allocated for structure only when the
_________ is declared.
4. A member element of a structure can be assessed
through ____& ____.
5. A pointer to a structure can be declared as
____________________________.
6. structures improve the
________________________________ of the program.
7. structures find their use in
__.
8. size of a structure is
__.
9. A collection of heterogeneous objects that remain
unrelated called _.
10. All the members of a union share the same ______.
11. Size of the union is
_________________________________ .
12. typedef is used to create
___________________________.
13. syntax of typedef is
_________________________________.

Answers –

1. structure
2. struct
3. objects
4. . (period) or ->

8. sum of all the data
members and sub-
members.

9. union

(arrow operator)
5. struct tag_name

*ptr_to_pointer
6. readability
7. system

programming

10. memory space
11. largest memory space

required by one of its
members.

12. new data type names
13. typedef <name> <new

name>

Some Solved Problems:-

1. Write a program that compares two given dates. To store a date use a
structure that contains three members namely date, month and year. If the dates are
equal then display the message as “Equal” otherwise “Unequal”.

struct date
{

 int day, month, year;
};
int check_date(struct date *dt)
main()
{

int chkdt;
/*The dates to be compared*/
struct date d1, d2;
/*input the dates to be compared*/
printf(“\nEnter the dates to be compared:”);
chkdt = check_date(&d1);
if(chkdt == 0)
 exit();
fflush(stdin);
chkdt = check_date(&d2);
if(chkdt == 0)
 exit();
/* Compare the two structures*/

if((d1.day == d2.day)&& (d1.month == d2.month)&&(d1.year == d2.year))

printf(“\nDate are Equal”);
else

printf(“\nDate are Unequal”);
getch();

}
/*Function to check the date entered*/
int check_date(struct date *dt)
{

 printf(“\nEnter date(dd)”);
 scanf(“%d”,&dt->day);
 printf(“\nEnter month(mm)”);
 scanf(“%d”,&dt->month);
 printf(“\nEnter date(yyyy)”);
 scanf(“%d”,&dt->year);

if((dt->day >31 || dt->day<0) || (dt->month >12 || dt->month < 0) ||
(dt->year > 9999 || dt->year < 1000))

{
 printf(“\nImproper date entered”);
 return(0);
 }
 else
 return(1);

}

What would be the output of the following programs?

1) main()
 {

 struct message
 {
 int n;
 char
mess1[50];
 char
mess2[50];
 }m;

 m.n = 1;

4. main()
 {
 struct emp
 {
 char name[20];
 int age;
 float sal;
 };
 struct emp e={“Matrix”};
 printf(“%d %f
”,e.age,e.sal);

strcpy(m.mess1,”you can win”);
strcpy(m.mess2, “If you believe”);

/*assume that the structure is located
at address 2005*/

printf(“\n%u %u
%u”.&m.num,m.mess1,m.mess2);
 }
Output: The address will gets
printed of each structure member
variable.

2) struct gos
 {
 int n;
 char mess1[50];
 char mess2[50];
 }m1={2, “If you are driven
by success”,”make sure that it is a
quality drive” };
 main()
 {
 struct gos m2,m3;
 m2 = m1;
 m3 = m2;
 printf(“\n%d %s
%s”,m1.n,m2.mess1,m3.mess2);
 }

Output: 2 If you are driven to by
success make sure it is quality drive.
Because the object structure ‘m1’is
initialize when structure is created.
And in the main program two other
object m2 and m3 is created and m1
is copied in m2 and then m2 is
copied in m3 so m1 is copied in m2
and m3 and when there will be same
output as printing member of m1.

 }
1. 0.000000
2. Garbage value
3. Error
4. None of the above

Soution:0.000000

Explanation: When an automatic
structure is partially initialized, the
remaining elements of the structure
are initialized to 0.

5. struct emp
{
 char name[20];
 int age;

}
fun (int aa)
{

int bb;
bb=aa*aa;
return(bb);
}
main()
{

 int a;
 a=fun(20);
 printf(“\n%d”,a);

}
Explanation: The semicolon at the
end of the structure definition is
missing, the compiler believes that
the fun() would return something of
the type struct emp, where as in
reality it is attempting to return an
int. this causes a mismatch, hence
an error results.

6. f(struct emp);

There will be no effect in output to
change the member in printf().

An object can be assign in another
but can’t used in other operations.

3 main()
{
 union a
 {
 int i;
 char ch[2];
 };
 union a z=512;

printf(“%d %d”,z.ch[0],z.ch[1]);
}

Output:0 2 binary of 512
is(00000010 00000000)

struct emp
{
 char name[20];
 int age;
};
main()
{
 struct emp e=
{“matrix”, 30};
 f(e);
}
f (struct emp ee)
{

printf(“%s %d”,ee.name,ee.age);
}

Explanation: Error occurs which
can be rectified by declaring the
structure before the declration of the
function f().

Question-What is the similarity between structure, union and enum?
Answer: All of them let us define a new data type.

Question-Would the following declaration work:

typedef struct s
 {
 int a;

float b;
 }s;
Answer: Yes

Question-Can a structure contain a pointer to itself:
Answer: Yes, such structures are known as self referential structures.

Question-Point out the error if any in the following code

typedef struct
{

 int data;
NODEPTR link;

 }*NODEPTR;

Answer: A typedef defines a new name for a type, in this case however the error is that
a typedef cannot be used until it is defined. in the given code fragment the typedef
declaration is not yet defined at the point where the link field is declared.

Question-How will you eliminate the above problem?
Answer: To fix this problem, first a name (“struct node”) must be given to the
structure. Then declare the link field as a simple struct node * as shown below:

typedef struct node
{
 int data;

NODEPTR link;
 }*NODEPTR;

Another way to eliminate the problem is to disentangle the typedef declaration from the
structure definition shown below:

struct node
{
 int data;

NODEPTR link;
 };
 typedef struct node *NODEPTR;

Yet another way to eliminate the problem is to precede the structure declaration with a
typedef, in which case you should use the NODEPTR typedef when declaring the link
field as shown below:

typedef struct node *NODEPTR;
struct node
{
 int data;

NODEPTR link;
};

In this case, you declare a new typedef name involving struct node even though struct
node has not been completely defined yet; this you are allowed to do.

Question- void modify(struct emp*)

{
 char name[20];
 int age;

};
main()
{

 struct emp e= {“Sanjay”, 35}
 modify(&e);
 printf(“%s %d”, e.name, e.age);

}
void modify(struct emp *p)

{
 strupr(p->name);
 p->age=p->age+2;

}
Answer: The struct emp is mentioned in the declaration of the function modify() before
defining the structure. To solve the problem just declare the function before after
declaration of the structure or just add the statement struct emp before the prototype.

Question- Would the following code work:

#include<alloc.h>
struct emp

{
 int len;
 char name[1];

};
main()

{
 char newname[]= “Rahul”;
 struct emp *p= (struct emp *) malloc(sizeof(struct emp) – 1 +

strlen(newname)+1);
 p->len=strlen(newname);
 strcpy(p->name, newname);
 printf(“%d %s”,p->len, p->name);
 }

Answer: Yes, the program allocates space for the structure with the size adjusted so
that the name field can hold the requested name (not just one character as the structure
declaration would suggest).

Question-Can there be a better way to write the above program?
Answer: The best way to implement the problem is to use a character pointer instead of
an array as shown below:

#include<alloc.h>
struct emp
{
 int len;
 char *name;
};
main()
{
 char newname[]= “Rahul”;

 struct emp *p= (struct emp *) malloc(sizeof(struct emp));

 p->len=strlen(newname);
 p->name= malloc(p->len)+1;
 strcpy(p->name, newname);
 printf(“%d %s”,p->len, p->name);
 }

Obviously the “convenience” of having the length and the string stored in the same
block of memory has now been lost, and freeing instances of this structure require two
calls to the function free().

Question-How would you free the memory allocated in above question?
Answer: free(p->name);
 free(p);

Question- What would be the output of the following program?

main()
{

 struct emp
 {
 char *n;
 int age;
 };

 struct emp e1= { “David”, 23};
 struct emp e2=e1;
 strupr(e2,n);
 printf(“%s”,e1.n);

}
Answer: David

When a structure is assigned, passed, or returned, the copying is done
monolithically. This means that the copies of any pointer fields will point to the same
place as the original.

In other words, anything pointed to is not copied. Hence, on changing the name
through e2.n it automatically changed e1.n

Question- Point out the error if any in the following code:

main()
{

 struct emp
 {
 char n[20];
 int age;
 };
 struct emp e1= { “David”, 23};
 struct emp e2=e1;
 if(e1= =e2)
 printf(“The structures are equal”);
}

Answer: Structures cannot be compared using the built in = = and != operators. This is
because there is no single, good way for a compiler to implement structure comparison.
A single byte by byte comparison the bits present in unused paddings in the structure
(such padding is used to keep the alignment of later fields correct). A field by field
comparison might require unacceptable amounts of repetitive code for large structures.
Also, any compiler generated comparison could not be expected to compare pointer
fields appropriately in all cases; for example, it’s often appropriate to compare char *
fields with strcmp() rather than with = =.

Question-How would you check whether the contents of two structure
 variables are same or not?
Answer: struct emp

{

 char n[20];
 int age;
};
main()
{
 struct emp e1= { “David”, 23};
 struct emp e2;
 scanf(“%s %d”,e2.n, &e2.age);
 if(structcmp(e1, e2)= =0)
 printf(“The structures are equal”);
 else
 printf(“Structures are unequal”);
}
structcmp(struct emp x, struct emp y)
{
 if(strcmp(x.n, y.n)= = 0)
 if(x.age= = y.age)
 return(0);
 return(1);
}

In short, if you need to compare two structures, you will have to write your own
function to do so which carries out the comparison field by field.

Question-How are structure passing and returning implemented by the
 compiler?
Answer: When structures are passed as arguments to functions, the entire structure is
typically pushed on the stack. To avoid this overhead many programmers often prefer to
pass pointers to structures instead of actual structures. Structures are often returned from
functions in a location pointed by an extra, compiler supplied ‘hidden’ argument to the
function.

Question- How can I read/write structures from/to data files?
Answer: To write out a structure we can use fwrite() as shown below:

fwrite(&e, sizeof(e),1,fp);
where e is a structure variable. A corresponding fread() invocation can read the
structure back from a file.

On calling fwrite() it writes out sizeof(e) bytes from the address &e. Data
files written as memory images with fwrite(), however, will not be portable,
particularly if they contain floating point fields or pointers. This is because memory

layout of structures is machine and compiler dependent.

Different compilers may use different amount of paddings, and the sizes and
byte orders of fundamental types vary across machines. Therefore, structures written as
memory images cannot necessarily be read back in by programs running on other
machines (or even compiled by other compilers), and this is an important concern if the
data files you’re writing will ever be interchanged between machines.

Question-If the following structure is written to a file using fwrite(), can
 fread() read it back successfully?

struct emp
{
 char *n;
 int age;
};
struct emp e = {“Sujay”, 15};
FILE *fp;
fwrite(&e, sizeof(e), 1,fp);

Answer: No, since the structure contains a char pointer while writing the structure to
the disk using fwrite() only the value stored in the pointer n would get written (and not
the string pointed by it). When this structure is read back the address would be read
back but it is quite unlikely that the desired string would be present at this address in
memory.
Question-Would the following program always output the size of the structure
 as 7 bytes?

struct ex
{
 char ch;
 int i;

long int a;
};

Answer:
No, a compiler may leave holes in structures by padding the first char in the

structure with another byte just to ensure that the integer that follows is stored at an even
location.

Also there might be two extra bytes after the integer to ensure that the long
integer is stored at an address which is a multiple of 4.

This is done because many machines across values in memory more efficiently

when the values are appropriately aligned. Some machines cannot perform unaligned
accesses at all data be appropriately aligned.

Your compiler may provide an extension to give you control over the packing
of structures (i.e., whether they are padded), perhaps with a #pragma, but there is no
standard method.

If you are worried about wasted space, you can minimize the effects of padding

by ordering the members of a structure from largest to smallest. You can sometimes get
more control over size and alignment by using bitfields, although they have their own
drawbacks

Question- main()

{
 struct a
 {
 category:5;
 scheme: 4;
 };

printf(“size = %d”, sizeof(struct a));
}

Answer: size= 2

Since we have used bit fields in the structure and the total number of bits is
turning out to be more than 8 (9 bits to be precise) the size of the structure is being
reported as 2 bytes.

Lab Exercise – (WAP- Write a Program)

1. WAP to store information of 10 employees and to display information of an
employee depending upon the employee number input from the user.

2. WAP to accept and print a student's result using a structure.

3. WAP that uses a function that takes two date (day, month, year) structure

objects as arguments and returns the structure with later date.

4. WAP that uses a structure called point(x, y co-ordinates) to model a point.

Define three points, and have the user input values to two of them. Then
set the third point equal to the sum of the other two, and display the value
of the new point. Interaction with the program might look like this: Enter
co-ordinates for p1: 2 3 enter coordinates for p2: 6 8 coordinates of p1+p2
are: 8 11

5. WAP to add given number of days to a given date. Make use of structures

wherever possible.

6. Give necessary declarations for an array of 20 voter records, each record

of which consists of four data values viz. Id-no, name, address, age. Make
use of above declarations to write a program segment that prints id-no.,
name for all those voters whose age exceeds 60. (Assuming suitable data
types.)

CHAPTER
∞ 11 ∞

(Console Input and Output in C)

Introduction-

getchar Function (Single character Input) -

getchar() is used to enter a single character into the computer. The getchar
function is a part of the standard C input/output library. It returns a single character from
a standard input device (typically a keyboard). The function does not require any
arguments.

Syntax:- Character variable = getchar();

putchar Function (Single character output) -

This function is used to transmit a single character to a standard output device
(typically monitor).

It is also a part of the standard C I/O library. The character being transmitted

will normally be represented as a character-type variable. It must be expressed as
argument to the function, enclosed in parentheses, following the word putchar.

Syntax:- putchar(character variable);

The scanf Function (Entering input data) -

This function can be used to enter any combination of numerical values, single
characters and strings. scanf() enters data from the standard input device and stores it in
the computer’s memory. This function returns the number of data items that have been
entered successfully. Syntax:- cnt=scanf(“control string”, arg1,arg2,arg3……argn);

Where the value of cnt will be number of successful input & Control string is a

string for formatting, and arg1,arg2….. are arguments that represent the individual input
data items. The arguments are written as variables or arrays, whose types match the
corresponding character groups in the control string. Each variable name must be
preceded by an ampersand (&).

The printf Function (Writing Output data) -

This function can be used to output any combination of numerical values, single
characters and strings.its purpose is to display data . printf() move data from the
computer’s memory to the standard output device.

Syntax:- printf(“control string”,arg1,arg2………argn);

Here control string refers to a string that contains formatting information, and
arg1,arg2. are arguments that represent the individual output data items.

The control string can include a flag, which affects the appearance of the
output. The flag must be placed immediately after percent sign(%). Some commonly
used flags are:

(-) :- Data item is left justified within the field (blank spaces required to
fill theminimum field width will be added after the data item rather than before
the data item)

(+) :- A sign (either + or -) will precede each signed numerical data item.
 Without this flag, only negative data items are preceded by a sign.

(0) :- causes leading zeros to appear instead of leading blanks. Applies
only to data items tha are right justified within a field whose minimum size is
larger than the data item.

(‘ ’) (blank space):- A blank space will precede each positive signed

numerical data item. This flag is overridden by the + flag if both are present.

(#) (with o- and x- type conversion):- causes octal and hexadecimal
data items to be precede by o and ox,respectively.

(with e-, f- and g- type conversion):- causes a decimal point to be
 present in all a floating-point numbers, even if the data item is a whole
 number.

Optional format specifiers:

1. The field width specifer tells printf() how many columns on the screen
should be used while printing a value. For e.g.

int a=5;
printf(“%10d”,a);

would give integer a a field width of 10 columns. Since the value cannot
occupy the complete 10 columns, it will be right aligned leaving blank spaces
on the left side.

Thus output will be:

 5
2. if a minus sign is given with the format specifiers:

int a=5;
printf(“%-10d”,a);
would mean that the output should be left aligned leaving space at the right.
Show that output resulting from each of the following printf statements if the
declaration is:
float a=2.5, b=0.00005, c=3000;

(i) printf (“%f %f %f”, a, b, c);

output: 2.500000 0.000050 3000.000000
Note that each float number uses six places after decimal point.

(ii) printf (“%8f %8f %8f”, a, b, c);

output: 2.500000e+00=5.000000e-05 3.000000e+03

(iii) printf (“%e %e %e” , a, b, c);
output: 2.5000e+00 5.0000e-05 3.000e+03

(iv) printf (“%12.4e %12.4e %8.3e” , a, b, c);
output: 2.500000 +0.000050 %ø8f

(v) printf (“%-8f %+8f %ø8f” , a, b, c);
output: 2.500000 +0.000050 %ø8f

(vi) printf (“%#8f %8f %8f” , a, b, c);
output: 2.500000 0.000050 3000.000000

(vii) printf (“%g %g %g”, a, b, c);
output: 2.5 5e-05 3000

(viii) printf (“%#g %#g %#g”, a, b, c);
output: 2.50000 5.00000e-05 3000.00

Example:

Here is a simple program that defines the use of flags with integer and floating-
point quantities, decimal, octal ,hexadecimal numbers ?

#include<stdio.h>
#include<conio.h>
main()
{
 int i =123;
 float x=12.0, y=-3.3;
 int p=1234,q = 01777, r=0xa08c;
 printf(“:%6d %7.0f %10.1e:\n\n”,i,x,y);
 printf(“:%-6d %-7.0f %-10.1e:\n\n”,i,x,y);
 printf(“:%8u %8o %8x\n\n”,p,q,r);
 printf(“:%-8u %-8o %-8x\n\n”,p,q,r);
}
output:
: 123 12 -3.3e+00:
: 123 12 -3.3e+00:
: 1234 1777 a08c:
: 1234 1777 a08c:

gets() function and puts() function:-

These function are used to facilitate the transfer of strings between the

computer and the standard input/output devices. Each of these functions accepts a single
argument. The argument must be a data item that represents a string. The string may
include white space characters.

Gets() is used to get a string from keyboard (standard input).
Puts() is used to put a string on standard output.

Syntax:

gets(character_string variable);
puts(character_string variable);
#include<stdio.h>
main()
{

char line[20];
gets(line);
puts(line);

}
What would be the output of the following programs?

1. main()
 {
 char ch;
 ch = getchar();
 if(islower(ch))
 putchar(toupper
(ch));
 else

putchar(tolower(ch));
 }
Output: It will convert small letter to
capital and capital to small. Means if
you input ‘a’ the output will be ‘A’
and if you will ‘A’ then the output
will be ‘a’.

2. main()

6. main()
 {

printf(“More often than \b\b not
\r the person who
\
wins is the one who thinks he
can!”);

 }
Output: the person who
 wins is the one who
thinks he can!.
Because control print the message in
printf from left to right and when \b
is encounter it moves the cursor one
character and when the \r is
encounter it moves the cursor to the
beginning of the current line and the
print the next message that will

 {
 int i = 2;
 float f = 2.5367;
 char str[] = “Life is like that”;
printf(\n%4d\n3.3f\n%4s“,i,f,str);
 }

Output: ---2(3 spaces before
2 because here i gets printed in 4
columns width) --3.536(2 spaces
before the num and num will print
with 3 floating places.)

is like that.(because str contains
more than 4 character so it will
neglect the maximum length and print
the whole str.)

3. main()

{
int a=250;
printf(“%1d”, a);

}

Output: 250

4. main()
{

float a = 3.15529;
printf(“%6.2f”,a);
printf(“%6.3f”,a);
printf(“%5.4f”,a);
printf(“%2.1f”,a);
printf(“%0.0f”,a);
}

Output: _ _3.16
 _3.155

 3.1553
 3.2
 3

overwrite the previous message.

7. char p[] = “The sixth sick
 sheikh’s sixth ship is sick”;
 main()
 {
 int i = 0;
 while(p[i]!=’\0’)
 {

putch(p[i]);
 i++;
 }
 }
Output:
The sixth sick sheikh’s sixth ship is
sick
Because the loop start from 0 and
executes successfully till the Null
character is encountered so each
character of string will gets printed
start from beginning.

8. What would be the output of the
following program:

printf(“%%%%”);

Output: %%
9.Would the following code work, if
 yes, what would be the output:

int n=5;
printf(“n=%*d”,n,n);

Output: Yes. n= 5

* indicates that an int value from the
argument list will be used for field
width. In the argument list the width
precedes the value to be printed. In
this case the format specifier

5. Point out the error if any in the
following program:

char ch;
int i;
scanf(“%c”, &i);
scanf(“%d”, &ch);
printf(“%c %d”,ch, i);

Output: You will not get a chance to
input a character for the second
scanf() statement. Solution to this
problem is to precede the second
scanf() with the following statement.
fflush(stdin);
This would flush the enter hit for the
previous scanf() to be flushed out
from the input stream, i.e. keyboard.

becomes %5d

10. Can we specify variable
field width in a scanf() format
string?

Output:
No. A * in scanf() format string after
a % sign is used for suppression of
assignment. That is, the current input
field is scanned but not stored.

11. Out of fgets() and gets()
which function is safe to use?

Output:
fgets(), because unlike fgets(), gets()
cannot be told the size of the buffer
into which the string supplied would
be stored. as a result there is always
a possibility of overflow of buffer.

Point out the errors, if any, in the following program segments:

1. main()
 {
 int
i;

char a[] = “Hello”;

while(a != ‘\0’)
 {

printf(“%c”,*a);

 a++;
 }

5. main()
 {
 int dd,mm,yy;
printf(“\n Enter day,moth and year\n”);

scanf(“%d %*c %d %*c%d”,&dd,&mm,&yy);
printf(“The date is:%d-%d-%d”,dd,mm,yy);
 }
Output: No Error.
6. main()
 {
 char buffer[50];
 int no = 97;
 double val = 2.34174;
 char name[10] = “Shweta”;

 }
Output: Error.
“Lvalue required”
because array can’t
increamented.
2. main()
 {

double dual;

scanf(“%f”,&dual);
printf(“\nDouble
Value = %lf”,dual);
 }

Output: No Error
but the output will be
-0.000000. Because
double occupy 8
byte and float
occupy 4 byte.

3. main()
 {
 int
evel;

scanf(“%d\n”,&n);
printf(“\nInterger
Value = %d”,evel);
 }
Output: Error.
Undefined symbol n.

4. main()
 {

char *mess[5];

 sprintf(buffer,”%d %lf %s”,&no,&val,name);
 printf(“\n%d %lf %s”,no,val,name);

 sscanf(buffer, “%4d %2.2lf %s”,&no,&val,name);
 printf(“\n%s”,buffer);
 printf(“\n%d %lf %s”,no,val,name);
 }
No Error.
Because sprint() print the variable into the specified string(e.g. buffer in above example) instead to print the variable to screen. Similarly sscanf()
read character from a string and to convert and store tem in variables according to specified formats. So in the above program first the value of all the
variables is copied in buffer array and when we print out buffer it gives all the copied values. And then with sscanf() all the value read from the buffer
string and store them in the variable and when variable gets printed it displayed all the above assigned
values.

for(i = 0; i<5; i++)

scanf(“%s”,mess[i]);
 }
Output: Error.
Undefined symbol i
moreover when we
are talking about the
array of pointer it
should not receive
any string it can
receive the address
of any string or
character.

Answer the following:-

1) To receive the string “We
have got the guts, you get the
glory!!” in an array char str[100]
which of the following functions
would you use?

a) scanf("%s”,str);
b) gets(str);
c) getche(str);
d) fgetchar(str);

Output: gets(str)

2) Which function would you
use if a single key were to be
received through the keyboard?

a) scanf()

 5) What is the different between
getchar(),fgetchar(),getch() and
getche()?

Output:
All receive a character from
keyboard. There are minor
differences in them:
getchar():Receives a character from
keyboare, but it is necessary to hit
the enter key after the character.
fgetchar(): Same as getchar().
getchar() is mecro whereas fgetchar(
) is a function.
getch():Receives a character from
keyboard without

b) gets()
c) getche()
d) getchar()

Output: getche()

 3) If an integer is to be entered
through the keyboard, which function
would you use?

a) scanf()
b) gets()
c) getch()
d) getche()

Output: scanf()

 4) If a character string is to be
received through the keyboard which
function would work faster?

a) scanf()
b) gets()

Output: gets()

echoing(displaying) it on the screen.
getche(): Receives a character from
keyboard and echoes it on the screen.

 6) The format string of a
printf() can contain:

a) Character, format
specifications and escape
sequences
b) Character, integers and
floats
c) Strings, integers and
escape sequences
d) Inverted commas,
percentage sign and
backslash character

Output: a) Character, format
specifications and escape sequences

CHAPTER
∞ 12 ∞

(File handling through C)

Introduction-

Until now, we have used the functions scanf and printf to read and write data.
These are console oriented input and output functions which always use the keyboard
and screen as the target place. It is fine until the data is small. However in real life
problems involve large volumes of data and in such cases the console oriented output
and input operations has two major problems:

A. It is time consuming to handle a large amount of data.
B. The entire data is lost as soon as the program is closed or computer is switched
off.To overcome these problems we use file handling. File can be used to store the data
in the hard disk so that the data is permanently saved and does not get deleted even if the
computer is switched off.

A file can be defined as a place on the disk where a group of related data is stored. A
number of functions can be performed on the files:

Naming a file.
Opening a file.
Reading data from a file.

Writing data to a file.
Closing a file.

Let us see some of the functions of file

Function name

Operation

fopen() Creates a new file
Or opens an existing file for use.

fclose() Closes a file.
fgetc() Reads a character from file.
fputc() Writes a character from file.
fprintf() Writes a data from file.
fscanf() Reads a data from file.
fgetw() Reads an integer .
fputw() Writes an integer.
fseek() Sets a position to a desired points in the file.
ftell() Gives the current position in the file(i.e number of

bytes from the beginning).
rewind() Sets the position to the beginning of the file.
fwrite() Writes data to a file.
fread() Reads data from a file.
feof() Tests if end-of-file has been reached.
fflush() Flushes a stream.
Remove() Deletes the specified file.
Rename() Changes the name or path of file.
ferror() Tests if an error has occurred in the file.

Opening a file-

Before we can read or write information from or to a file on the hard disk we

must open the file.

To open the file function fopen() is used and a mode which tells the compiler

that we would write, read or modify the file. This fopen() function performs three
tasks:

Searches the file on the disk.

Then it loads the file from the disk into the place in memory called buffer.

It sets a character pointer which will point the first character in the buffer.

Need of buffer:

The buffer is the temporary area in the memory of the computer where a file is
kept for sometime so that it can be accessed quickly to read or write characters. It
would be rather inefficient to every time go to the hard disk and read a character print it
on the screen, then again go to the hard disk again to access next character.

Here the buffer comes to use, whenever we open a file the contents of the file

get copied to this temporary area and then read character by character from the buffer
rather than from the disk and similarly to write characters of the file one at a time on the
disk would also be a wastage of time so buffer is used to write the characters and then
they are transferred to the disk.

The fopen() gathers information like file name, size of file and the mode to

open the file then returns the address of this file to a file pointer called fp. This can be
explained as:

 FILE *fp;
 fp=fopen("file_name","mode");

here FILE is a constant defined in the header file stdio.h so it is compulsory to use
#include<stdio.h>

Reading a file:

The function fgetc() is used to read the contents of the file which has been
brought to the buffer(partly or wholly) from the hard disk. fgetc() is used as:
 ch= fgetc(fp);

fgetc() is used to read the character from the current position of the pointer.
The pointer now moves one place ahead so that it points the next character. The
character which was read by the fgetc() is assigned to variable ch.

We use this fgetc()within an infinite while loop, but then the loop has to break
at the end of the file. This is done using a special character which is placed at the end
of a file. The ASCII of this character is 26. This character is not returned but a marco is
returned called EOF. This EOF is also defined in the stdio.h. The fgetc() can also be
replaced with getc().

Sometimes we have to encounter problems while opening a file in the “r”

mode, if the file of given name is not present on the disk. Similarly opening a file in “w”
mode can also fail due to many reasons like insufficient space in the disk or disk being
write protected or damaged disk. Now if the file does not open the fopen () function
returns a NULL.(defined in stdio.h and used as # define NULL 0).

The file opening modes are:-

 “r” open an exiting file for reading only.
 “w” open a new file for writing only.
 “a” open an exiting file for appending.
 “r+” open an exiting file for both reading and writing
 “w+” open a new file for both reading and writing.
 “a+” open an exiting file for both reading and appending.

Writing characters to a file:

Function fputc() is used to print the characters from the screen to the
file. And to print a string on the file the function fputs() is used.

fputc(ch,fp); Here ch is the name of the character and fp the file pointer.
fputs(s,fp); Here s is the name of the string and fp the file pointer.

Let us try a simple program:

 #include<stdio.h>
 main()
 {
 FILE *fp; /*declaring file pointer*/
 fp = fopen(“sample.dat”,”r”); /*opening the file sample.dat in read mode*/

if(fp==NULL)

 printf(“file cannot be opened”);
 else
{

 ………
 fclose(fp);

}
}

Closing a file:

When we have finished reading the file, we need to close it. This is done by fclose().
This is used as; fclose(fp);

To close the file we do not need the filename. The fclose() function performs
three main tasks.

The characters in the buffer would be written to the file on the disk.
At the end of file a character with ASCII value 26 would get written.
The buffer gets eliminated from the file.

1. Write a program to count the number of characters, spaces, tab, new
lines in a file.

#include<stdio.h>
main()
{
 FILE *fp;

 char ch;
int lines=0,tab=0,space=0, characters=0;
fp=fopen(“text.c”,”r”);
while(1) /* infinite loop*/
{
 ch = fgetc(fp);
 if(ch= =EOF)
 break;
 characters++;
 if(ch= = 32)
 space++;
 if(ch= = ‘\n’)
 lines++;

if(ch= = ‘\t ’)
 tab++;

}
fclose(fp);
printf(“number of lines = %d\ntabs = %d\ncharacters = %d\nspaces =

%d”,lines,characters,spaces);
getch();

}

2. Write a program to receive some strings from keyboard and print it to a
file

#include<stdio.h>
main()
{

 FILE *fp;
 char s[50];

fp=fopen(“text.c”,”w”); /*opening file*/
if(fp= =NULL) /*to check opening errors*/
{

 puts(“file opening error”);
 exit();

}
printf(“Enter some text”);
while(strlen(gets(s))>0)
{

 fputs(s,fp);
 fputs(“\n”,fp);

}
fclose(fp);

}
3. Write a program to read all the strings from file and print it on screen

#include<stdio.h>
main()
{

 FILE *fp;

 char s[50];
fp=fopen(“text.c”,”r”); /*opening file*/
if(fp= =NULL) /*to check opening errors*/
{

 puts(“file opening error”);
 exit();

}
 while(fgets(s,49,fp)!= NULL)
 printf(“%s”,s);
 fclose(fp);
 getch();

}
Multiple Choice Questions -

1.What values are returned from
fclose if the file is closed properly:

a. zero
b. one
c. -1
d. none

2.The function that is used to see an
error, if occurred, is
 a. ferror
 b. fiota
 c. fseek
 d. none
3.Which mode opens the file for
reading and writing mode
 a. r++
 b. i++
 c. w++
 d. r+
4. In the following code:

FILE *fp;
fp = fopen(“trial”, “r”);
fp points to

a. The first character in the file.
b. A structure which contains a

5. Given: FILE file_p;

file_p=fopen(“text.dat”,”a+”);
 The error in the above is

a. FILE FILE_p
 b. FILE *filem_p
 c. FILE *file_p
 d. none

6. To close a file, we use
 a. fexit(file_p)
 b. fclose
 c. break
 d. fclose(file_p)

7. Which condition is used to test the
end of file condition-
 a. eof
 b. ferror
 c. feof
 d. none

8.Which function takes a file pointer
and resets the position to start a file

char pointer which points to the first
character in the file.
c. The name of the file.
d. None of the above.

 a. fseek
 b. rewind
 c. ftell
 d. all the above

Answers:-

1 (a) 2 (a) 3 (d) 4 (b) 5 (c) 6 (b)

7 (c) 8 (b)

Point out the errors, if any, in the following program segments:

1. #include “stdio.h”
 main()
 {
 FILE *fp;

openfile(“Myfile.txt”,&fp);
 if(fp = =
NULL)
 printf(“Unable to
open file…”);
 }
 openfile(char *fn,
FILE **f)
 {
 *f = fopen(fn,
“r”);
 }
Output: No Error. In the
above program for opening a

error”);
 exit();
 }
 fclose(fp);
Output :No error

7. #include “stdio.h”
 main()
 {
 unsigned char;
 FILE *fp;

 fp = fopen(
“trial”,’r’);
while((ch = getc(fp))!=EOF)

printf(“%c”,ch);

 fclose(*fp);

file a function openfile() is
used and two argument is
passed first is file name and
second one is file pointer.
Because file name is a string
so a pointer of type character
will receive it and to the file
pointer f is declared of type
FILE. Where FILE is a pre
defined structure and because
f receive a pointer address so
it is declared as double
pointer.

2. #include “stdio.h”

#include “stdlib.h”
 main()
 {
 FILE *fp;
 char c;
 fp = fopen(
“Try.c”,”r”);

 if(fp= =
null)
 {

puts(“Cannot open file”);

exit();
 }
 while((c =
getc(fp))!=EOF);

putch(c);
 fclose(fp);
 }
Output: Error. “null” must
be in upper case because it is
predefined in stdio.h as

 }

Output: Error. Type mismatch
in parameter ‘_mode’ in call to
fopen. Because the mode must
be enclosed in double quotes.
Error. Undefined symbol ch.
Error. Type mismatch in
parameter ‘_stream’ in call to
‘fclose’. Because there is no
need to use * with fp.

8. main()
 {
 FILE *fp;
 char name[25];
 int age;
 fp =
fopen(“yours”,”r”);
while(fscanf(fp,”%s
 %d”,name,&age)
!=NULL)

printf(“%s %d\n”,name,age);
 fclose(fp);
 }
Output: Error. EOF is used instead
of NULL because with fscanf will read the
record from the file and when it will to the
last record it will meet with EOF.

9. main()
 {
 FILE *fp;
 char names[20];
 int i;
 fp =
fopen(“student.dat”,wb);
 for(i = 0; i<10;
i++)

#define NULL 0.
3. main()
 {
 char fname[] =

“c:\\students.dat”;
 FILE *fp;
 fp = fopen(
fname ,”tr”);
 if (fp = =
NULL)
printf(“\nUnable to open
file…”);
 }
Output: No Error. but
remember “stdio.h” must be
included.

4. main()
 {
 FILE *fp;
 char
str[80];
 fp =
fopen(“Try.c”,”r”);

while(fgets(str,80,fp)! =
EOF)

fputs(str);
 fclose(fp);
 }
Output: Error. because
fputs() needs two argument
and written as fputs(str,fp)
and because we use string in
loop so there is NULL in the
place of EOF.

5. unsigned char;

 {
 puts(“\nEnter
name”);

gets(name);

fwrite(name,size
 of(name),1,fp);
 }
 close(fp);
 }

Output: Error.Because sizeof
should be one word and fclose
should be use to close the file.

10. FILE *fp;
 fp=fopen(“matrix”,”r”);

fseek(fp,20,SEEK_SET);
 fclose(fp);

Output: Instead of 20 use 20L
since fseek() needs a long offset
value.

11. FILE *fp;
 char s[80];
 fp=fopen(“matrix”,
“r”);
 while(!feof(fp))
 {
 fgets(s, 80,fp);
 puts(s);
 }
 fclose(fp);
Output:

The last line of file “matrix”
will be read twice. To avoid

 FILE *fp;
 fp=fopen(“matrix”,
“r”);

while((ch=getc(fp))!=EOF)
 printf(“%c”,ch);
 fclose(fp);
Output: EOF has been
defined as # define EOF-1 in
the file “stdio.h” and an
unsigned char ranges from 0
to 255 hence when EOF is
read from the file it cannot be
accommodated in ch.
Solution is to declare ch as
an int.

6. unsigned char;
 FILE *fp;
 fp=fopen(“matrix”,
“r”);
 if(!fp)
 {
 printf(“file
opening

this, use:
while(fgets(s,80,fp)!=NULL)
 puts(s);

CHAPTER
∞ 13 ∞

(Miscellaneous Topics)

Introduction-

Macro -

We already know that # define statement can be used to define symbolic
constants. Thus constants provide a form of shorthand notation. Define statement can be
used to define macros, i.e. they can be used to replace these expressions, complete
statements or a group of statements.

Program to find the maximum of two numbers using macro:

#define max (a,b) a>b?a:b /*declaration of macro*/
main()
{

 int a,b,ans;
 printf(“Enter two numbers”);
 scanf(“%d %d”,&a,&b);

ans = max(a,b);
printf(“max = %d”,ans);
getch();

}
The program contains a macro max, which represents the expression a>b?a:b.

when the program is compiled, the expression a>b?a:b will replaces the identifier max.

Macro definitions are customarily placed at the beginning of a file, ahead of

the first file function definition. The scope of a macro is global.

A multi-line macro can also be defined by placing a backward slash at the end

of each line except the last. This feature permits a single macro to be represented as
compound statement.

Declaration of a variable as a constant:-

We may like that the value of certain variable must not change during the
execution of the program. This can be done by declaring the variable with a keyword
const at the time of initialization.

e.g. const float PI= 3.14;

This declaration tells the compiler that the value of the variable pi must not
change during the execution of the program.

Declaring a variable as volatile:-

ANSI standard defines another qualifier volatile that could be used to tell
explicitly the compiler that a variable’s value may be changed at any time by some
external sources (from outside the program).

 volatile int date;

The value of data may be altered by some external factors even if it does not
appear on the left hand side of an assignment statement.

When we declare a variable as volatile, the compiler will examine the value

of the variable each time it is encountered to see whether any external alteration has
changed the value.

Mind Drill Note-

Remember that the value of a variable declared as volatile can be modified
by its own program as well.

If we wish that the value must not be modified by the program while it may be

altered by some other process, then we may declare the variable as both const and
volatile as (volatile const int = 150;).

Defining Symbolic Constants:-

We often use some constants in our program. These constants may appear in
the program a number of times. For e.g. the value of pi should always be 3.14. Thus it

can be used in the program as

define PI 3.14

is called the preprocessor or compiler directive.

As we already know PI is a constant and so its value must always be the same
throughout the program.Symbolic constants are also called as constant identifiers.
Following rules apply to the # define statements:

To differentiate between variables and symbolic constants the symbolic
constants are written in capital.

No blank space is given between the # and the word define.

A blank space is required between the word define and the symbolic constant.

Symbolic names are not declared with the data type.

#define statements do not end with a semicolon.

#define statements can appear anywhere in the program but before they are
used. But usually the are used before the main ().

Pre processor directives:-

The preprocessor, as the name implies, is a program that processes the source
code before it passes through the compiler.

C preprocessors:

The preprocessor is a collection of special statements, which are executed at
the beginning of the compilation process. These are called directives.

Some preprocessor are:

1. #include.:- This is used to include header files.

2 #define :- This statement is used to define symbolic constants and macros:
 i.e., single identifires that are equivalent to expressions.

For example:

#include<stdio.h>
#define area length*width
main()
{

int length, width;
printf(“enter length and width”);
scanf(“ %d %d”,&length,&width);
printf(“\n area is %d”,area);

}

3. #if, #elif, #else and #endif permit conditional compilation of the source program,
depending on the value of one or more true/false conditions. They are also used in
conjunction with the defined operator.

For example:

#if defined(FOREGROUND)

 #define BACKGROUND 0
#else

 #define FOREGROUND 0
 #define BACKGROUND 7

#endif

4. #elif :- #elif is analogous to an else – if clause using in control statements

5. #else:-
6 #endif
7 #ifdef :- #ifdef is equivalent to #if defined().
8. #ifndef:- #ifndef is equivalent to #if!defined. i.e. , “if not defined”.
9. #undef:- The #undef directive “undefines” a symbolic constant or a macro
 identifier; i.e., it negates the effect of a #define directive .
For example:

#define FOREGROUND 7
#define BACKGROUND 0
main()
{

………

#undef FOREGROUND
#undef BACKGROUND

}

Mind Drill Note- #if , #ifdef, #ifndef must end with #endif.
Operators:-

The preprocessor also includes two special operators: defined #, and ##.

Stringizing operator (#):-

It allows a formal argument within a macro definition to be converted to a
string. If a formal argument in a macro definition is precede by this operator , the
corresponding actual argument will automatically be enclosed in double quotes.

Token pasing operator (##):-

It causes individual items within a macro definition to be concatenated thus
forming a single item.

Example:

#define display(i) printf(“ x” #i “= %f\n”,x##i)

Suppose this macro is accessed by writing display(3);

The result will be: printf(“x3= %f\n”, x3);

Thus the expression x##i becomes the variables x3, since 3 is the current value of the
argument i.

Multiple Choice:

1. What is a preprocessor directive?
1. a message from compiler to the

programmer.
2. a message from compiler to the

linker.
3. a message from programmer to

the preprocessor.

4. A header file is:
1. a file that contains standard

library functions.
2. a file that contains definitions

and macros.
3. a file that contains user-defined

functions.

4. a message from programmer to
the microprocessor

Answer: 3. a message from
programmer to the preprocessor

2. Which of the following are
correctly formed #define statements-
1. #define INCH PER FEET 12
2. #define SQR(X) (X*X);
3. #define SQR(X) (X*X)
Answer: 3 #define SQR(X) (X*X)

3. Which of the following is not a
preprocessor directive?
1. #if
2. #elseif
3. #undef
4. #pragma

Answer: 2.#elseif

4. a file that is present in current
working directory.

Answer: 2. a file that contains
definitions and macros

5. All macro substitutions in a
program are done-
1. Before compilation of the

program
2. After compilation
3. During execution
4. None of the above
Answer: 1. Before compilation of the
program

What will be the output of the following program:

1.
#define sqr(x) (x*x)
main()
{
 int a,b=3;
 a=sqr(b+2);
 printf(“%d”,a);
}
Output: 11 because, on
preprocessing the expression
becomes a=(3+2*2+3).

2.How would you define the sqr
macro in above question such that it
gives the result of a as 25.

7. main()
{
 #ifdef NOTE

/*unterminated
 comment
 int a;
 a=10;
 #else
 int a;
 a=20;
 #endif
 printf(“%d”,a);

Output: Even though the #ifdef fails

Output: #define sqr(x) ((x) *(x))

3. # define cube(x) (x*x*x)
main()
 {

int a,b=3;
a=cube(b++);
printf(“%d %d”,a,b);
}

Output: 27 6.
4.
#define MESS junk

main()
{
 printf(“MESS”);
}

Output: MESS

5. #define PRINT(int)
 printf(“%d”,int)

main()
{
 int x=2,y=3, z=4;
 PRINT (x);
 PRINT (y);
 PRINT (z);
}

Output: 2 3 4

6. How would you define the
 above macro such that it

outputs:
x=2 y=3 z=4
Output:

#define PRINT(int)
printf(#int “= %d”, int)

main()
{
 int x=2,y=3, z=4;

in this case(Note being undefined)
and the if block doesn’t go for
compilation errors in it are not
permitted.

8. Would the following typedef
work?
 typedef #include I;
Output:No, because typedef works
only after the preprocessors have
finished working.

9. #define max(a,b) (a>b?a:b)

main()
{
 int x;
 x=max(3+2,2+7);
 printf(“%d”,x);
}

Output: 9

10. Write a macro PRINT for the

following program such that it
outputs:

x=4 y=4 z=5
a=1 b=2 c=3
main()
{
 int x=4, y=4, z=5;

int a=1, b=2, c=3;
PRINT(x,y,z);
PRINT(a,b,c);
}

Output: #define PRINT(var1, var2,
var3) printf(“\n” #var1 “=%d” #var2
“=%d” #var3 “=%d”, var1, var2,
var3)

11. Define the macro DEBUG such

that the following program

 PRINT (x);
 PRINT (y);
 PRINT (z);
}

The rule is if the parameter name is
preceded by a # in the macro
expansion, the combination (of # and
parameter) will be expanded into a
quoted string with the parameter
replaced by the actual argument. This
can be combined with the string
concatenation to print the output
desired in our program. On
expansion the macro becomes
printf(“x” “=%d”,x);
The two strings get concatenated, so
the effect is printf(“x =%d”,x);

outputs:
DEBUG: x=4
DEBUG: y=3.140000
DEBUG: ch=A

main()
{
 int x=4;
 float a=3.14;

char ch= ‘A’;
 DEBUG(x, %d);
 DEBUG(a, %f);

DEBUG(ch, %c);
}

Output:#define DEBUG(var,fmt)
printf(“DEBUG” #var “=”#fmt
“\n”,var)

12. #define str(x) #x

#define Xstr(x) str(x)
#define oper multiply
main()
{
 char
*opername=Xstr(oper);

printf(“%s”,opername);
}

Output: multiply
Answer the following:

1. What is the difference between the following two #include directives:

 #include<conio.h>
 #include”conio.h”
Answer:
#include “conio.h”: This command would look for the file conio.h in the current
directory as well as the specified list of directories as mentioned in the search path that

might have been set up.

#incude<conio.h>: This command would look for the file conio.h in the specified list
of directories only.

2. Indicate what would the swap macro be expanded to on preprocessing.
 Would the code compile?

#define swap (a, b, c) (c t; t=a; a=b; b=t)
main()
{
 int x=10,y=20;
 swap (x, y, int);
 printf(“%d %d”,x,y);
}

Answer: (int t;t=a,a=b,b=t;);

This code will not work since declaration of t cannot occur within
parenthesis.

3. How would you modify the swap macro in the above question such that it is
 able to interchange two integers?

Answer: #define swap(a,b,c) ct;t=a, a=b, b=t;

4. In which line of the following program an error would be reported?

1. #define area(r) (3.14*r *r);
2. main()
3. {
4. float r=1.0, c;
5. c=area(r);
6. printf(“%f”,c);
7. if(area(r)= =6.28)
8. printf(“Matrix”);
9. }

Answer: Line number 7, but the real culprit is the semicolon in the line number 1. On
expansion line number 7 becomes if((3.14*1.0*1.0);= =6.28). Hence the error.

5. What is the type of the variable b in the following declaration?
#define floatptr float*
floatptr a,b;

Answer: float and not a pointer to a float, since on expansion the declaration
becomes:

float *a,b;

6. Is it necessary that the header files should have .h

Answer: No, but traditionally they have been given the .h extension to identify
them as something different than the .c program files.

7. What do header files usually contain?

Answer: Preprocessor directives like # define, structure, union and enum
declarations, typedef declarations, global variables and external function
declarations. One should not write the actual code(i.e. function bodies) or
global variable definitions in header files. The #include directive should be
used to pull in header files, not other .c files.

8. How can a header file ensure that it doesn’t get included more than once?

Answer: All declarations must be written in the manner shown below. Assume
that the name of header file is FUNCS.H.

#ifndef_FUNCS
#define_FUNCS
#endif

Now if we include this file twice as shown below, it would get included
only once.

9. On inclusion, where are the header files searched for?

Answer: If the header file is included using < > the files get searched in the
predefined included path(the path can also be changed). If included with the “
” syntax in addition to the predefined path the file is also searched in the
current directory(usually the directory from which you invoked the compiler).

State whether true or false:

a. If the file to be included doesn’t exist, the preprocessor flashes an
error message.

b. The preprocessor can trap simple errors like missing declarations,
nested comments or mismatch of braces.

c. Would it result in an error if the header file is included twice.

d. Would the following program print the message infinite number of
times?

 #define INFINITELOOP while (1)
 main()
 {
 INFINITELOOP
 printf(“\nMatrix”);
 }
e. Would the following program compile successfully?

main()
{
 printf(“Matrix” “computers”);
}

Answer:
a. True b. False c.
False d. True e. True

CHAPTER
∞ 14 ∞

(Storage Class)

Introduction-

Storage class decides the memory location of a variable. Memory location can
be –

1. Main Memory (RAM).
2. CPU registers.

It decides the default value of a variable (Zero value or garbage value). It also
decides the scope & lifetime of a variable. Scope indicates the region over which the
variable’s declaration has an effect or in other words that particular variable can be
used.

The four different kinds of scopes are global, function, block and prototype.

There are 4 storage classes:-

1. Automatic storage class (auto)
2. Static storage class (static)
3. External storage class (extern)
4. Register storage class. (register)

Automatic storage class:-

Variable declared inside a function has by default automatic storage class. It is
initialized by garbage value.

The declaration is given as: int a or auto int a;
void prn();
main()

 {
 int a=5;
 printf(“%d ”, a);
 prn();
 prn();
 prn();
 }
 void prn()

{
 int a=10;
 a++;
 printf(“%d ”,a);
 }

 Output: 5 11 11 11

Here in the above example the two variables have the same name but they

have different scope. Variable a in prn() has local scope so every time prn() is called a
new copy of a will be generated.

Static storage class:-

Static storage class should be used only when a program requires the value of
a variable to persist between different function calls like in recursive function. The
variable is declared as: static int b; Static variable will have local scope and global
lifetime.

Static variable are defined within individual functions and therefore have the

same scope as automatic variables. They are local to the functions in which they are
default.

They retain their values throughout the life of the program. Thus if a function is

exited and then re-entered at a later time, the static variables defined within that function
will return their former values.

void prn();
main()
{
 prn();
 prn();
 prn();
}
void prn()
{
 static int a=10;
 a++;
 printf(“%d ”,a);
}

Output:11 12 13

In the above example only a single copy of variable a will be created and this

single copy will be used every time prn() is called, so it will increment the last function
call value of variable a.

External storage class:-

Variable declared outside all the functions have external storage class. Extern
storage class should be used for only those variables which are being used by all the
functions in the programs, Now there is no need to pass a variable in all the functions.

But it is also not advisable to store all the variables as extern because it will

remain active through out the life of the program thus wasting a lot of memory
unnecessarily. The external variables are declared as extern int c; It is also used when
the variables of one program have to be used in some other programs also for
example:-

File1.c

#include ”File2.c”
int a; /*Variable definition */
main()
{
 a= 5;
 func();
 printf(“%d”,a);
}

File2.c
extern int a; /*Variable
declaration*/
void func()
{
 a=10;
}

Output: 10 Variable a will get memory in File1.c. Because it is defined
outside the function so it is called as external variable and its scope is
global. It can also be used in another file File2.c. variable a used in both
files is same. But when we compile the File2.c we have to imform the
compiler that variable a will come from outside so we have declared a as
extern int a;(no memory allocation at this time), but if we declare it as int a;
then compiler will treat it as a new variable.

Register:-

There are only 14 CPU registers available and even lesser than that can be
used by us as the microprocessor is using it. But the CPU registers are accessed by the
computer very fast and so the program is executed very fast. So, it will be best used for
loop counters which have to be used a number of times. However if a register is not
free, auto storage class is used and the execution is carried on. The CPU registers are 2
bytes long. So their maximum range is equal to that of int. float values can not be stored
in register. Even if we say register float x, auto is assumed for x. The variable for this
class are declared as,

register int d;
Summary:-

Default Value

Storage Class Memory Scope Lifetime
Auto Main memory (RAM) Garbage Local Local
Static Main memory (RAM) Zero Local Global
Extern Main memory (RAM) Zero Global Global
Register CPU Registers Garbage Local Local

What will be the output of the following-

1. int f(int);
 int g(int);
main()
{
 int x, y, s = 2;
 s *= 3;
 y = f(s);
 x = g(s);
printf(“\n%d %d %d”,s,y,x);
}
int t =8;
int f(int a)
{
 a += -5;
 t -= 4;
 return(a+t);
}
Int g(int a)
{
 a = 1;
 t += a;
 return(a+t);
}
Output:- 6 5 6
First s will be 6 and passed to f() and received by
a and after process a will be 1 and t will be 4.
because t is a global so it is available in whole
program and when g() is called the a receive
again 6 and overlapped by 1 so a=1 and t = t+a so
t = 5 and this function returns a+t so x will be 6
and finally s = 6, x = 6, y = 5 that will get print
through printf().

4.
main()
{
 static int a[20];

int i=0;
a[i]=i++;
printf(“%d %d %d”, a[0],

a[1], i);
}
Output:-0 0 1

5.
float x =4.5;
main()
{
 float y, float f(float);
 x*=2.0;
 y = f(x);
 printf(“\n%f %f”,x,y);
}
float f(float a)
{
 a+=1.3;
 x-= 4.5;
 return(a+x);
}

Output:- 4.500000 14.800000

6.
int x = 10;

2.
main()
{
 static int c = 5;
 printf(“\n c = %d”,c--);
 if (c !=0)
 main();
}
Output:- 5 4 3 2 1
Because c = 5 and first printed and
then decrease by 1 and then call
main() but because here c is defined
as static so the control doesn’t go to
the initialization and this condition
will be true for five times and each
time c gets printed and then decrease
so c will be 5 4 3 2 1.

3.
main()
{
 int i,j;
 for(i = 1; i<5; i++)
 {
 j = g(i);
 printf(“\n%d”,j);
 }
}
Int g(int x)
{
 static int v = 1;
 int b = 3;
 v+=x;
 return(v+x+b);
}
Output:- 6 9 13 18

main()
{
 int x = 20;
 {
 int x = 30;
 printf(“%d ”,x);
 }
 printf(“\n %d”,x);
}
Output:- 30 20

Because when control executes the
innermost printf it will print 30
because the local variable gets
priority and when control comes out
from this block the scope will ends
and here x =20 and gets printed.

7.
main()
{
 extern int i;
 i=20;
 printf(“%d”,sizeof(i));
}

Output:- Error extern int i is a
declaration and not definition

8.
main()
{
 extern int a;
 printf(“%d”,a);
}
int a=20;

Output:- 20

State the True or False:

1. An extern storage class variable is not available to the functions that

precede its definition, unless the variable explicitly declared in these
functions.

2. The value of an automatic storage class variable persists between various
functions invocations.

3. If the CPU registers are not available, the register storage class variables

are treated as static storage class variable.

4. The register class variables cannot hold float values.

5. If we try to use register storage class for a float variable the compiler will
flash an error message.

6. If the variable x is defined outside all functions and a variable x is also
defined as a local variable of some function, then the global variable get
preference over the local variable.

7. The default value for automatic variable is zero.

8. The life of static variable is till the control remains within the block in
which it is defined.

9. If a global variable is to be defined, then the extern keyword is necessary
in its declaration.

10. The address of register variable is not accessible.

Answers:

1. True 2. False 3.
False
4. True
5. False 6. False 7.
False
8. False
9. False 10. True

CHAPTER
∞ 15 ∞

(Algorithm’s)

Introduction-

Algorithm No. 1: Sum of two numbers-

1. Read A and B.
2. Set SUM:=A + B.
3. Write SUM.
4. Exit.

Algorithm No. 2: Maximum of two numbers-

1. Read A and B.
2. If A > B, then:

Set MAX:=A.

 Else:
 Set MAX:=B.
 [End of If structure]
3. Write MAX.
4. Exit

Algorithm No. 3: Maximum of three numbers-

1. Read A , B,C.
2. If A > B, then:

If A > C, then:
Set MAX:=A.

 Else:
 Set MAX:=C.
 [End of If structure]
 Else:
 If B > C, then:
 Set MAX:=B.

 Else:
 Set MAX:=C.
 [End of If Structure]

3. Write MAX.
4. Exit.

Algorithm .4: To input percentage from user and print the grade.(Using Else if)

1. Read P.
2. If P>=90, then:

Set GRADE:=’A’.
 Else If P >= 70, then:
 Set GRADE := ‘B’.
 Else if P>=50, then:
 Set GRADE:=’C’.
 Else:
 Set GRADE:=’F’.
 [End of If Else Structure].

3. Write GRADE.
4. Exit

Algorithm No. 5: To print the series 1 to N using for loop.

1. Read N.
2. Repeat Step 3 for I:=1 to N:
3. Write I.

[End of Step 2 loop]
4. Exit.

Algorithm No. 6: To print the series 1 to N using while loop.

1. Read N.
2. Set I:= 1
3. Repeat Step 4 and 5 While I<= N:
4. Write I.
5. Set I:=I+1.

[End of Step 3 loop]
6. Exit.

Algorithm No. 7: To print the series 1 to N using do while loop.

1. Read N.
2. Set I:=1.
3. Write I.
4. Set I:=I + 1.
5. if I<=N, then: goto step3.
6. Exit.

Algorithm No. 8: Convert decimal number to binary equivalent.

1. Read N.
2. Set B:=0.
3. Set I:=0.
4. Repeat step 6 to 9 While N>=0
5. Set N:= N/2.
6. Set B:= B + 10i * Remainder [this part will take care of reversing

the accumulated remainders].
7. Set I:=I+1.
8. Write B.

9. Exit

Algorithm No. 9:Reverse the digits of given n digit numbers.

1. Read N.
2. Set REV:=0.
3. Repeat steps 5 and 6 While N>=0.
4. Set N:=N/10.
5. Set REV:= REV *10 + remainder.
6. Print the value of REV.
7. Exit.

Algorithm No. 10: To verify whether a given number is prime or not.

1. Read N.
2. Set I:=2 and PRIME =1.
3. Repeat Steps 4 while I<=N/2
4. If(N % I=0)

Set PRIME:=0. and exit the loop structure.
Else:

Set I:= I+ 1.
[End of If Structure.]
[End of While loop]

5. If PRIME=1, then:
Print the number is prime.

Else
Print the number is not prime.

6. Exit.

Algorithm No. 11: Linear search in an array

Algorithm No. 12: Calculate factorial using function

1. Read N.
2. ANS=FACT (N).
3. Write ANS.
4. Exit

[This procedure is used to calculate the factorial of N]

1. Set ANS:=1
2. Repeat step 3 for I:=N to 1
3. Set ANS:= ANS* I
4. [End of Step 3 loop]
5. Return ANS.
6. Exit.

CHAPTER
∞ 16 ∞

(Unsolved Practical Problems)

Introduction-

1. A phone number such as (011)711 8802 can be thought of as having
three parts: the area code(011), the exchange(711), and the number (8802).write a
program that uses a structure to store these three parts of a phone number
separately. Call the structure phone. Create an array to store 20 records of its
member wherein each record stores the memberno, member name and phone
number of phone type. Have the user input the information for all records and then
display the entire information on the screen.

2. Create a structure called volume that uses three variables (length,
width, height) of type distance (feet and inches) to model the volume of a room.
read the three dimensions of the room and calculate the volume it represents, and
print out the result. The volume should be in (feet)3 form i.e., you will have to
convert each dimension in to feet and fractions of foot. For instance, the length 12
feet 6 inches will be 12.5 feet.

3. Declare a structure to represent a complex number (a number having a
real part and imaginary part).write a c program to add two complex numbers.

4. Declare a structure to represent a complex number (a number having a
real part and imaginary part).write a c program to subtract two complex numbers.

5. Declare a structure to represent a complex number (a number having a
real part and imaginary part).write a c program to multiply two complex numbers.

6. Declare a structure to represent a complex number (a number having a
real part and imaginary part).write a c program to divide two complex numbers.

7. WAP to record score of a cricket match. one array stores information
of batting team such as batsman's name, run scored, indication if out mode by
which out along with total runs, overs played, total overs and extras. The other
array stores information about bowling team such as bowler's name, overs
bowled, maiden overs, runs given and wickets taken. The program reads in the
above information and depending upon the user's choice, it displays either the
batting team's information or the bowling team's information.

8. WAP to prepare the invoice from the following data: customer number,
customer name and address, data of sale, description, quantity, unit price,
discount percentage, sales tax percentage.

9. WAP to prepare and print payroll (payslip) of a group of employees
for a particular month of the year. the employee information contains the
following items: name and designation of employee, basic pay(bp),special
pay(sp), contribution to general provident fund(pf),contribution to group
scheme(gis),income tax deduction(it),city compensatory allowance(cca)= rs.
250,dearness allowance(da)=114% for basic pay < rs. 3500 85% for basic pay >
3500 and < 6000 74% for basic pay pay > 6000 house rent
allowance(hra)=rs. 250.00 for basic pay < rs. 1500 rs.
450.00 for basic pay > 1499 and 2800 rs. 800.00 for basic pay > 2799 and <

3500 rs. 1000.00 for basic > 3499. The program computes
the above quantities, gross pay, total deductions net pay and prints in a specified
format. (hint: gross=bp+sp+hra+da+cca net=gross-deductions(i.e.,pf+gis+it)
make use of structures and arrays in the program.

10. WAP to store 20 records containing country, capital and name of its
president. the president name it is a record containing last name, first name,
preface(mr, miss, mrs.).the program should display the entire record whenever the
country name or capital is given.

11. Suppose a store has a number of items in their inventory and that each
item is supplied by almost two suppliers. WAP to store details of 20 items in an
array and then print it.

12. An array stores details of 25 students (rollno, name, marks in three
subjects).WAP to create such an array and print out a list of students who have
failed in more than one subjects. assume 40% as pass marks.

13. WAP to calculate income tax of a group of employee from the
following data. Total income, life insurance premiums (lic),unit-linked insurance
plan (ulip),provident fund(pf),post-office cumulative time deposit(ctd), national
saving certificates(nsc) Assume the following norms for the calculation of income
tax: a tax total income slab rates of income tax

upto 3500o nil
 from 35001 to 60000 20%

from 60001 to 120000 30%
120000 and above 40%

b exemptions contributions to lic, gpf, ppf, ulip, nsc, ctd etc, are exempt from
paying income tax subject to a maximum of rs. 120000 is admissible.

14. A linear array of size 50 stores following information’s: name of the
country, country's capital and per capita income of the country. write a complete
program in c to do the following:

a) to read a country's name and display capital and per-capita income.
b) to read name of the capital city and displays country's name and displays
country's name and per capital income. display an error message incase of an
incorrect input.

15. WAP using structure to store price list of 50 items and to print the
largest price as well as the sum of all prices.

16. WAP in c using structure to simulate result preparation system for 20
students. the data available for each student includes rollno, name and marks in 3
subjects. the percentage marks and grade are to be calculated from the above
information, the percentage marks are the average marks are the average marks
and the grade is calculated as

 follows: % marks grade
 < 50 'f'
 >=50 < 60 'd'
 >=60 < 75 'c'
 >=75 < 90 'b'
 >=90 < 100 'a'.

17. WAP a c program to simulate an arithmetic calculator for integers. the
program should be able to produce the last result calculated and the number of
arithmetic operations performed so far. any wrong operations is to be reported.

18. WAP to make a structure named "student" having following as
structure member:1) name 2) roll-no 3) marks of three subjects viz. English, hindi,
maths. do the following operations using the structure:

 a) accept name, roll no and marks in three subjects.
 b) calculate total and percentage.

c) show the information on the screen in given below format XYZ school half
yearly examination

 Name: roll no:
 Marks in Hindi:
 Marks in English:
 Marks in Maths:

 Total marks: per:

19. WAP to make a structure "contestant" for a beauty contest in which
check the following condition & accept details for 5 contestants only if they
satisfy following criteria:

 a) if age is between 18 to 20
 b) Weight is between 45 to 60

 c) Qualification is graduate
Structure members are: 1) Name 2) Age 3) Weight 4) Qualifications-->
1. Below graduate 2. Graduate 3. Postgraduate. Now display the details of all
5 contestant in tabular manner.

20. WAP to make structure "stock". Accept details of 10 stock items. The
structure members are :1) item_name 2) item_code 3) rate 4) qty_in_ stock 5)
amount. now ask of the user item code which he want to see, search it display it if
it exit otherwise give appropriate message.

21. WAP to create a structure to specify data on students given below:
roll number, name, department, course, year of joining assume that there are not
more than 450 students in the college. do the following operations using the
structure:

a) print names of all students who joined in a particular year.
 b) print the data on a student whose roll number is given.

2 2 . Create a structure to specify data of customers in a bank. the data to be stored is: account
number, name ,balance in account. assume maximum of 200 customers in the bank. do the following
operations using the structure:

a) to print the account number and name of each customer with balance RS.
100.if a customer requests for withdrawal or deposit, it is given in the form:
acct. no, amount,(1 for deposit,0 for withdrawal)
b) to give a message, "the balance is insufficient for the specified withdrawal".

23. An automobile company has serial numbers for engine parts starting
from aa0 to ff9. The other characteristics of parts be specified in a structure are:
year of manufacture, material and quantity manufactured. now, do the following:

a) specify a structure to store information corresponding
to a part.

b) WAP to retrieve information on parts with serial numbers
between bb1 and cc6.

24. A record contains name of cricketer, his age, number of test matches
that he has played and the average runs that he has scored in each test match.
create an array of structures to hold records of 20 such cricketers and then
write a program to read these records and arrange them in ascending order by
average runs.

2 5 . Create a structure to represent a book in a library. It include the
following members: book number, book name, author, publisher, price, no. of
copies, no. Of copies issued. now do the following operations using the structure:

a) to assign initial values.
 b) to issue a book after checking for its availability.
 c) to return a book.
 d) to display book information.

26. Create a structure to represent bank account of 10 customers with the
following data members: name of the depositor, account number, type of account
(s for saving and c for current account),balance amount. now, do the following
operations using the structure:

a) To initialize data members
 b) To deposit money.

c) For withdrawal of money after checking the minimum balance(minimum
balance is rs. 1000).
d) To display the data members.

27. Create a structure to represent batsman in a cricket team. it include the
following members: first name, last name, runs made, number of fours, number of
sixes. now do the following operations using the structure:

 a) to assign the initial values.
b) to update runs made(it should simultaneously update fours and
sixes, if required).
c) to display the batsman's information.
make appropriate assumptions about access labels.

28. Create a structure to represent bowlers in a cricket team. include the
following members: first name, last name, overs bowled, number of maiden
overs, runs given, wickets taken. now do the following operations using the
structure:

 a) to assign the initial values
 b) to update the information
 c) to display the bowler's information.
 make appropriate assumptions about access labels.

29. WAP to manage a room's statistics. the room structure includes the
following members: length, width, height. now do the following operations using
the structure:

a) to assign initial values. b) to calculate area.
 c) to display information (length, width, height & area).

30. Modify the above program so that length, width and height become the
variable of structure distance that includes: meters, centimeters.

31. Let itemlist be a linear array of size n (where n is a user input) where
each element of the array contains following fields: item, code, item price,
quantity. declare a structure with itemlist as data member and perform the
following operations:

 a) appending an item to the list.
 b) given the itemcode, delete an item from the list.
 c) printing the total value of the stock.

32. WAP to handle 10 account holders. the program should use the
structure as defined in q.33.make necessary changes in the class definition - if
required.

33. Write a structure to represent a vector (1-d numeric array).now do the
following operations using this structure:

 a) for vector creation.
 b) for modification of a given element.
 c) for displaying the largest value in the vector.
 d) for displaying the entire vector.
 e) for adding two vectors and displays the resultant vector.

WAP using this structure.

34. Create two structures mc and fi which store the value of distances. mc
stores distances in meters and centimeters whereas fi stores in feet and inches.
WAP that reads value for variables of both the structures and can add one
variable of mc with an variable of fi.

35. Imagine a ticket selling both at a fair. people passing by are required

to purchase a ticket. A ticket is priced as RS. 2.50/-. The booth keeps track of the
number of people that have visited the booth, and of the total amount of money
collected. Model this ticket selling booth with a structure called ticbooth
including following members: number of people visited, total amount of money
collected. Now do the following operations:

a) to assign initial values (assign 0 to both data members).
 b) to increment only people total in case ticket is not sold out
 c) to increment people total as well as amount total if a ticket is sold
 out.
 d) to display the totals.
 e) to display the number of tickets sold out(a tricky one).
 WAP to include this structure.

36. WAP to perform various operations on a string structure without using
language supported built-in string functions. The operations on a structure are:

 a) Read a string.
 b) Display the string.
 c) Reverse the string.
 d) Copy the string into an empty string.
 e) Concatenate two strings.

37. WAP to process the sales activity for 20 salesman. Each salesman
deals in separate product and is assigned an annual target. At the end of the month,
his monthly sale is added into the sales till date. At the end of the year, his
commission is calculated as follows: if sales made is more than target then the
commission is 25% of the extra sales made + 10% of the target if sales made is
equal to the target then the commission is 10% of the target. Otherwise
commission is zero.

38. A bookshop maintains the inventory of books that are being sold at the
shop. The list includes details such as author, title, price, publisher and stock
position. Whenever a customer wants a book, the sales person inputs the title and
author and the system searches the list and displays whether it is available or not.
If it is not, an appropriate message is displayed.

If it is, then the system displays the book details and requests for the number of
copies required. If the requested copies are available, the total cost of the
required copies is displayed, otherwise the message "sorry! These many copies

are not in stock" is displayed. Design a system using a structure called stock.
This program includes the following operations:

a) The price gets updated as and when required.
b) The stock value of each book should be automatically updated as
soon as transaction is completed.
c) The total number of books (titles) sold get displayed (along with
total sales (in RS.) As and when required.

39. WAP to print the score board of a cricket match in real time. The
display should contain the batsman's name, runs scored, indication if out, mode by
which out, bowler's score (overs played, maiden overs, runs given, wickets
taken).as and when a ball is thrown, the score should be updated.(hint: use
separate arrays to store batsman's and bowlers, information).

40. WAP to prepare the invoice from the following data: customer name,
customer name, customer address, date of sale, item no, item description, quantity
sold, unit price of item, discount percentage and sales tax percentage.

 note: identify different structures possible here.

41. A college maintains a list of its students graduating every year. at the
end of the year, the college produces a report that lists the following:

 year:
 number of working graduates :
 number of non-working graduates :
 details of the top-most scorer
 name :
 age :
 subject :
 average marks :

x% of the graduates this year are non-working and n % are first divisioners.

WAP for it that uses the following structure path:

 person -----> student ------> graduate student
 (name, age) (roll no, average marks) (subject, employed)

the data members of these structures have seen shown in the
parenthesis.

42. WAP that reads several different names and rearranges the names into
alphabetical order, and then writes out the alphabetized list. make use of structure
variables within the program.

43. Assume that a bank maintains two kinds of accounts for customers,
one called as savings account and the other as current account. the savings account
provides compound interest and withdrawal facilities but not cheque book
facility. the current provides cheque book facility but no interest. Current account
holders should also maintain a minimum balance and if the balance falls below
this level, a service charge is imposed. create a structure account that stores
customer name, account number and opening balance. from this derive the
structures current and savings to make them more specific to their requirements.
now do the following tasks:

 a) deposit an amount for a customer and update the balance.
 b) display the account details.
 c) compute and deposit interest.

d) withdraw amount for a customer after checking the balance and update the
balance.
e) check for the minimum balance(for current account holders), impose penalty,
if necessary, and update the balance.

44. WAP defining an union which can hold an "integer" or "float" string.
define a variable "union type" to keep track of the type of data stored in the union.
write a function to print the value stored in the union.

45. WAP to define a union of type "ans" containing two members-an
integer quantity and a floating quantity. Compute the average and standard
deviation of the numbers and print them.

46. WAP for the following: track sales for a used-car business with 12
brands in stock, each with an integer code, and generate a daily report that
indicates

a) inventory by brand at day's start.
 b) total cars sold by brand at day's end.
 c) sales as a percentage of inventory, by brand.
 (assume all cars have the same price)
 sample input:
 car brand no. No. Of cars in stock No. Of cars sold

 1 10 0
 2 12 0
 3 13 6

12 30 0
 Sample output:
 Brand #: 1

 brand #: 3
 inventory at day's start: 23
 total sales: 6
 inventory at day's end: 17
 sales as percentage of inventory: 26.086957

47. WAP that can maintain the name, roll number and marks of a class of
students. the size of the class is variable. include functions to compute the average
marks of the class.

48. WAP to read in a string and output the frequency, of each character in
that string.

49. WAP to read in a string and output the frequency of each word in that
string.

50. A company pays normal wage for work during weeks days from
monday to friday and 1.5 times wage for work on saturday and sunday. given data
in the following form:

employee number, wage/hour, hours worked on monday, hours on tuesday,..,
hours on sunday.
WAP to write out the employee number and weekly wages. use enumerated
data type in your program.

51. Define a structure for a student having name, roll number and marks
obtained in six subjects. assume that "all students" is an array of students. WAP to
print the name and roll numbers of the students who have secured highest marks in
each subject.

52. Define a structure "mca2_oops" which has the members: entry_no,
marks, marks_minor, marks_ major, total. WAP for initialize the variables of

objects, finding the total marks which is sum of marks_major and marks_minor.
This program will handle 30 students and displaying their marks.

53. Create a structure of big cities bigcity of india,the data member of the
structure are name of the city,std code(say for calcutta std code is 033) etc.WAP
which interactively ask the name abd addresss,local phone number of residents
and print in the following format:

1. Name: s.p.rama rao 2. Address:3/2 apc road
 3. Pincode no.: 700052 4. Phone no: (033)-4347270

END.

Advise - Other Best Selling Java Books (Paperback & Digital PDF)
Top 10 Java Books for Students & Professionals-Search on Amazon.com or Google

Play & Google Books. (Book Pages – 900, Total Chapters 30)

1. Java Teach Yourself Core Java in 21 Days. 2014,
ISBN- 978-1499643015.

2. Beginning Programming with Java.: Easy Version. 2014
ISBN- 978-1499643039.

3. Core Java Professional : Learn Java Step By Step With Fun.
 ISBN - 978-1499651027.
4. Effective Core Java.: The Complete Core Reference.
 ISBN - 978-1499642582.
5. Java Brainstorming.: Special Beginners Edition 2014.
 ISBN - 978-1499651119.
6. Java Power To you.: Special Beginner's Edition 2014.
 ISBN - 978-1499651621.
7. Java, Brain-Washer.: Special Beginners Edition 2014.
 ISBN - 978-1499651324.
8. Thinking in Java.: Special Beginner's Edition 2014.
 ISBN - 978-1499651478.
9. Effective Core Java.: The Complete Core Reference.
 ISBN - 978-1499642582.
10. JAVA The HARDER BETTER FASTER STRONGER. 978-1499651614

Best Java Interview Books
List Search on Amazon.com or Google Play & Google Books. Search with Full Book
Name or ISBN Or Author Name- Harry H Chaudhary.
1. Cracking The Java Coding Interview Hand Book 2014.
2. Java Interview Questions & Answers 2013-2014 Edition.
3. Java Interview Made Easy.
4. Technical Interview Made Easy.

Best Data Structure and Algorithms Books for Beginner’s or Students.

List Search on Amazon.com or Google Play & Google Books. Search with Full Book
Name or ISBN Or Author Name- Harry H Chaudhary.

1. Data Structures And Algorithms.: Made Easy.
ISBN- 978-1495996016

2. Algorithms, Professional Edition.: Beginner's Guide.
ISBN- 978-1500137274

3. Thinking In Data Structures and Algorithms.:
ISBN-978-1500137281

Best C++ Books for Beginner’s or Students.
List Search on Amazon.com or Google Play & Google Books. Search with Full Book
Name or ISBN Or Author Name- Harry H Chaudhary.

1. Your Brain On C++ : Learn C++ Very Fast & Very Easy.
ISBN-13: 978-1500349578

2. Learning C++ : Fast Track Easy C++ Guide for Beginners.
ISBN-13: 978-1500349509

3. C++ for Students : A Beginner's Guide That Makes You C++ Champion.
ISBN-13: 978-1500349523

4. C++ Without Fear: A Beginner's Guide That Makes You C++ Champion.
ISBN-13: 978-1500349530

5. C++ How to Program : New Best selling Edition for Beginners.
ISBN-13: 978-1500349547

6. Teach Yourself C++ in One Hour Daily (40 Days Champ Course)
ISBN-13: 978-1500339340

7. Effective C++ : Easy Beginner's To Experts Edition.
ISBN-13: 978-1500329747

8. How to Become a C++ Programmer : Step By Step Beginner's To Experts
Edition. ISBN-13: 978-1500329662

9. Thinking In C++ Programming : The Definitive Beginner's To Expert's

Guide. ISBN-13: 978-1500310790
10. C++ Programming Professional. ISBN- 978-1495995552

Best C# Programming Books for Beginner’s or Students.

List Search on Amazon.com or Google Play & Google Books. Search with Full Book
Name or ISBN Or Author Name- Harry H Chaudhary.

1. How to Become a C# Programmer. ISBN: 978-1500193683.
2. Head First C# . ISBN: 978-1500193690.
3. Effective C# : ISBN: 978-1500193614.
4. C# Professional : ISBN: 978-1500193874.

We Want to Hear from You!

For Digital version of each book mentioned above, Search on Google Books or Google
play- Download Digital Edition of these book with 5.99 USD Only Limited time offer
for serious Readers. First Download Free Demo then Purchase with $5.99

 As the reader of this book, you are our most important critic and
commentator. We value your opinion and want to know what we’re doing right, what
we could do better, what areas you’d like to see us in correction or publish in, and any
other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t like about this
book—as well as what we can do to make our books stronger.

 Please note that I cannot help you with technical problems related to the topic
of this book, and that due to the high volume of mail I receive, I might not be able to
reply to every message. When you write, please be sure to include this book’s title and
author as well as your name and phone or email address. I will carefully review your
comments and share them with the author (Myself) and editors who worked on this
book.

 One more thing don’t forget to give us star Reviews rate comments on
Amazon.com Please Visit on Amazon.com or other website from where you purchased

this book. and Write your own customer Review Rate (Stars) from your heart to our
Book and Comments that will help us to improve this book data to make better and
better for future

I did hardwork and I Spent several months to make this book, atleast I can
expect one customer review from you, I hope this book helped you a lot , please share
this book with other students and tell your college friends about this book but please
suggest to consider buying your own copy from pothi.com (pdf) or createspace.com
store (paperback), lulu.com, smashwords.com, amazon.com (kindle & paperback)
or google books (digital) , google Play Store (digital)

Both Physical Paperback and Digital Editions Are also Available on
Amazon.com And Createspace Book Store , but on google books (digital) , google
Play Store (digital) & pothi.com just Order today and Get a Discounted digital Copy
with very low price. I would like to suggest you, buy paperback edition for better
understanding, search this book’s paperback edition on amazon.com with following
ISBN Numbers- ISBN10: 1500481114. ISBN-13: 978-1500481117.

CHAPTER
∞ 17- Part –II ∞

(Step By Step Chapter Wise Programs)
(Pumping Brain On C Programming)

Silent Features of part- II

120, C-Programming Practice code examples.
Creating Library Function’s with examples.
Deleting Library Function’s with examples.
Graphics Programming with examples.
Intro Operating System Development.
Live Software Development Project.
Live Virus Programming.

1.Wap To Sum Of Two Variables.

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t\Enter the value of a=");
scanf("%d",&a);
printf("\n\t\t Enter the value of b=");
scanf("%d",&b);
c=a+b;
printf("Sum=%d",c);
getch();
}

2. Wap To Subtraction Of Two Variables.

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%d",&a);
printf("\n\t Enter the value of b=");
scanf("%d",&b);
c=a-b;
printf("Sub is =%d",c);
getch();
}

3.Wap To Multiply Of Two Variables.

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%d",&a);
printf("\n\t Enter the value of b=");
scanf("%d",&b);
c=a*b;
printf("Multiply is =%d",c);
getch();
}
4.Wap To Divide Of Two Variables.

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c;

clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%d",&a);
printf("\n\t Enter the value of b=");
scanf("%d",&b);
c=a/b;
printf("Divide is =%d",c);
getch();
}

5.Wap To Find Out Simple Interest, Hence Ask To Enter The Values Of
 Principle,Rate,Time By User.

#include<stdio.h>
#include<conio.h>
void main()
{
float si,p,t,r;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of p=");
scanf("%f",&p);
printf("\n\t Enter the value of t=");
scanf("%f",&t);
printf("\n\t Enter the value of r=");
scanf("%f",&r);
si=(p*t*r)/100;
printf("si=%f",si);
getch();
}

6.wap to read marks of a student in five subjects of a college and calculate
 his total of marks and also calculate percentage.

#include<stdio.h>
#include<conio.h>
void main()
{
float s1,s2,s3,s4,s5,totel,per;

clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value subject s1=");
scanf("%f",&s1);
printf("\n\t Enter the value of subject s2=");
scanf("%f",&s2);
printf("\n\t Enter the value subject s3=");
scanf("%f",&s3);
printf("\n\t Enter the value of subject s4=");
scanf("%f",&s4);
printf("\n\t Enter the value of s5=");
scanf("%f",&s5);
total=s1+s2+s3+s4+s5;
per=total/5;
printf("\n total=%f \n per=%f",totel,per);
getch();
}

7. Wap to swap two variables using third variable.

#include<stdio.h>
#include<conio.h>
void main()
{
float a,b,c;
clrscr();
printf("\n\t\t\tI’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%f",&a);
printf("\n\n\t Enter the value of b=");
scanf("%f",&b);
c=a;
a=b;
b=c;
printf("\n after swapping a=%f \n\t b=%f",a,b);
getch();
}
Note : Swap means interchanging values to each other.
Note : Here c is a temp. Variable.

8. Wap to swap two variables without using third variable.

#include<stdio.h>
#include<conio.h>
void main()
{
float a,b;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%f",&a);
printf("\n\n\t Enter the value of b=");
scanf("%f",&b);
a=a+b;
b=a-b;
a=a-b;
printf("\n\t\After swapping a=%f\n\n\t\t b=%f",a,b);
getch();
}
9. Wap to calculate area of triangle (Tribhuj).

#include<stdio.h>
#include<conio.h>
void main()
{
float a,b,c,s,r,area;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of a=");
scanf("%f",&a);
printf("\n\n\t Enter the value of b=");
scanf("%f",&b);
printf("\n\t Enter the value of c=");
scanf("%f",&c);
s=a+b+c;
area=s*(s-a)*(s-b)*(s-c);
r=area;
printf("\n\t\t Area=%f",r);
getch();
}

10. Wap to read time in hour,min,sec and convert it in to total seconds.

#include<stdio.h>
#include<conio.h>
void main()
{
int hr,min,sec,totalsec;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter the value of hr=");
scanf("%d",&hr);
printf("\n\n\t Enter the value of min=");
scanf("%d",&min);
printf("\n\t Enter the value of sec=");
scanf("%d",&sec);
totalsec=(hr*3600)+(min*60)+sec;
printf("\n\t\t Totalsec=%d",totalsec);
getch();
}
11. Wap to print ASCII code of any character.
#include<stdio.h>
#include<conio.h>
void main()
{
char ch;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");
printf("\n\n\t Enter any character =");
scanf("%c",&ch);
printf("\n\t\t ASCII code of =%c is %d",ch,ch);
getch();
}

Mind Drill Note :

ASCII is a Table (American Standard Code For Instruction Interchange.)

12. WAP to find out whether a Entered no. Is Even Or Odd.

#include<stdio.h>
#include<conio.h>
void main()
{
int n;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n");printf("\n\n\t Enter any number =");
scanf("%d",&n);
if(n%2==0)
printf("\n\t\t Number is even");
else
printf("\n\t\t Number is odd");
getch();
}

13. Wap to check that Entered character is capital,small,digit,or a special
 symbol?

#include<stdio.h>
#include<conio.h>
void main()
{
char ch;
clrscr();
printf("\n\t\t\t I’m Learning C with Harry’s Book \n"); printf("\n\n\t Enter any character
=");
scanf("%c",&ch);
if(ch>=65 && ch<=90)
printf("\n\t\t character is uppercase");
else
if(ch>=97 && ch<=122)
printf("\n\t\t character is smaller case");
else
if(ch>=48 && ch<=65)
printf("\n\t\t character is digit");
else
printf("Character is special symbol");
getch();

}
14. Wap to find out area by pai.

#include<stdio.h>
#include<conio.h>
void main()
{
float r,area,pi=3.14;
clrscr();
printf("Enter radius");
scanf("%f",&r);
area=pi*r*r;
printf("area=%f",area);
getch();
}

15. Wap to find out average of two no’s

/* average of 2 no*/
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b;
 float avg;
 clrscr();
 printf("Enter 2 no");
 scanf("%d %d",&a,&b);
 avg=(a+b)/2.0;
 printf("average=%f",avg);
 getch();
}

16. Wap to Entered total no. Of days and find out in months.

#include<stdio.h>
#include<conio.h>
void main()
{

int n,m,d;
 clrscr();
 printf("Enter no of days\n");
 scanf("%d",&n);
 m=n/30;
 d=n%30;
 printf("months=%d,days=%d",m,d);
 getch();
}
17. Wap to swap 3 no. Using third variable.
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c,t;
clrscr();
printf("Enter three no");
scanf("%d %d %d",&a,&b,&c);
t=a;
a=b;
b=t;
t=c;
c=b;
b=t;
printf("%d %d %d",a,b,c);
getch();
}

18. Wap to swap 3 no’s without using third variable.
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c;
clrscr();
printf("Enter three no");
scanf("%d %d %d",&a,&b,&c);
a=a+b;
b=a-b;

a=a-b;
b=b+c;
c=b-c;
b=b-c;
printf("%d %d %d",a,b,c);
getch();
}
19. Wap to calculate profit and loss.
#include<stdio.h>
#include<conio.h>
void main()
{
float sp,cp;
clrscr();
printf("Enter cost price and selling price\n");
scanf("%f %f",&cp,&sp);
if(cp<sp)
 printf("profit=%.2f Rs",sp-cp);
else if(sp<cp)
 printf("loss=%.2f Rs",cp-sp);
else
 printf("no profit no loss");
getch();
}
20. Wap for calculate total & percentage then print Grades.

#include<stdio.h>
#include<conio.h>
void main()
{
float p;
 char grade;
 clrscr();
 printf("Enter percentage\n\n");
 scanf("%f",&p);
 if(p>=90)
 grade='A';

 else if(p>=70)
 grade='B';
 else if(p>=50)
 grade='C';
 else
 grade='F';
 printf("grade=%c",grade);
 getch();
}

21.wap to convert lower case to upper case.

/* lower case to upper case*/

#include<stdio.h>
#include<conio.h>
void main()
{
char ch;
clrscr();
printf("Enter a character\n");
scanf("%c",&ch);
if(ch>=97&&ch<=122)
ch=ch-32;
printf("%c",ch);
getch();
}

22. Wap to find out large no. Between two no’s

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b;
 clrscr();
 printf("Enter 2 no");

 scanf("%d %d",&a,&b);
 if(a>b)
 printf("%d is greater",a);
 else if(a==b)
 printf("Both are equal");
 else
 printf("%d is greater ",b);
 getch();
}

23. Wap to find out max no. From four no’s

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,c,d;
 clrscr();
 printf("Enter 4 no");
 scanf("%d %d %d %d",&a,&b,&c,&d);
 if(a>b)
 {
 if(a>c)
 {
 if(a>d)
 printf("%d",a);
 else
 printf("%d",d);
 }
 else if(c>d)
 printf("%d",c);
 else
 printf("%d",d);

 }
 else if(b>c)
 {
 if(b>d)
 printf("%d",b);
 else

 printf("%d",d);
 }
 else
 {
 if(c>d)
 printf("%d",c);
 else
 printf("%d",d);
 }
 getch();
}

24. Wap for Develop mini calculator Using switch with Case.

/* calculator*/
#include<stdio.h>
#include<conio.h>
void main()
{
int a,b,ch;
clrscr();
printf("Enter two no\n");
scanf("%d %d",&a,&b);
printf("1/t add\n 2/t subtract\n 3/t multiplication\n 4/t divide\n 5/t modulus\n Enter your
choice\n");
scanf("%d",&ch);

switch(ch)
 {
 case 1:
 printf("sum=%d",a+b);
 break;

 case 2:
 printf("subtraction=%d",a-b);
 break;

 case 3:
 printf("multiplication=%d",a*b);

 break;

 case 4:
 printf("division=%f",(float)a/b);
 break;

 case 5:
 printf("modulus=%d",a%b);
 break;

 default:
 printf("invalid input");
 }

 getch();
}
25. Wap to for mini calculator using Arithmetic operators each operator
 perform specific task.

#include<stdio.h>
#include<conio.h>
void main()
{
int a,b;
char ch;
 clrscr();
 printf("Enter two no\n");

scanf("%d %d",&a,&b);
flushall();

printf("/n + for add \n - for subtract \n * for multiplication \n / for divide\n Enter
your choice\n");

scanf("%d",&ch);

switch(ch)

 {

 case ‘+’ :
 printf("sum=%d",a+b);
 break;

 case ‘-’ :
 printf("subtraction=%d",a-b);
 break;

 case ‘*’ :
 printf("multiplication=%d",a*b);
 break;

 case ‘/’:
 printf("division=%f",(float)a/b);
 break;

 case ‘%’ :
 printf("modulus=%d",a%b);
 break;

 default:
 printf("invalid input");
 }

 getch();

}
26. Wap to calculate Factorial of any given no. By user.

#include<stdio.h>
#include<conio.h>
void main()
{
Int n,i,f=1;
 clrscr();
 printf("Hello Guys, I’m Learning C Programming with Harry’s Book ");
printf(" Enter the any no. For factorial");

 scanf("%d “,&n);
for (i=1;i<=n;i++)
f=f*i;
printf(“\n factorial is = %d”,f);
getch();
}

27. Wap to calculate power of no.

#include<stdio.h>
#include<conio.h>
void main()
{ int n,i,p;
long int ans=1;
clrscr();
printf("Enter a no and its power to be calculated");
scanf("%d %d",&n,&p);
i=p;
 while(i>=1)
 { ans*=n;
 i--;
 }
 printf("%ld",ans);
 getch();
}

28. Wap to find out how many day in month.

#include<stdio.h>
#include<conio.h>
void main()
{

int a;
clrscr();
printf("Enter a month no");
scanf("%d",&a);

 switch(a)
 {
 case 1:
 case 3:
 case 5:
 case 7:
 case 8:
 case 10:
 case 12:
 printf("There are 31 days in given month");
 break;
 case 2:
 printf("There are 28 days in given month");
 break;
 case 4:
 case 6:
 case 9:
 case 11:
 printf("There are 30 days in given month");
 break;
 default:
 printf("Invalid input");
 }
 getch();2
}

29. Wap to convert temp from Fahrenheit to centigrade.

#include<stdio.h>
#include<conio.h>
void main()
{
float f,c;
 clrscr();
 printf("Enter Temperature in F");

 scanf("%f",&f);
 c=(f-3.2)/1.8;
 printf("Temperature in C is %f",c);
 getch();
}

30. Wap to show given year is leap year or not.

#include<stdio.h>
#include<conio.h>
void main()
{ int n;
 clrscr();
 printf("Enter an year");
 scanf("%d",&n);
 if(n%100==0)
 {
 if(n%400==0)
 printf("leap year");
 else
 printf("Not leap year");
 }
 else
 {
 if(n%4==0)
 printf("leap year");
 else
 printf("Not leap year");
 }
 getch();
}

31. Wap to know is year leap year or not .

#include<stdio.h>
#include<conio.h>
void main()
{
int y;
clrscr();
printf("Enter an year\n");
scanf("%d",&y);
if(y%400==0||y%100!=0&&y%4==0)
printf("Given year is leap year\n");
else
printf("Given year is not leap year");
getch();
}
32. Wap for weekday.

/* weekday*/
#include<stdio.h>
#include<conio.h>
void main()
{int w;
clrscr();
printf("Enter a weekday\n");
scanf("%d",&w);
 switch(w)
 {
 case 1:
 printf("Sunday");
 break;
 case 2:
 printf("Monday");
 break;
 case 3:
 printf("Tuesday");

 break;
 case 4:
 printf("Wednesday");
 break;
 case 5:
 printf("Thursday");
 break;
 case 6:
 printf("Friday");
 break;
 case 7:
 printf("Saturday");
 break;
 default:
 printf("invalid input");
 }
 getch();

}
33. Wap to working of telephone bill company.

/* telephone bill*/
#include<stdio.h>
#include<conio.h>
void main()
{
int calls;
float bill;
clrscr();
printf("Enter no of calls");
scanf("%d",&calls);
printf("calls o to 100\t 0Rs\n calls 101-200\t 0.80Rs\n calls 201-500\t 1.00Rs\n calls
>500\t 1.20Rs\n");
if(calls<=100)
 bill=0;

else if(calls<=200)
 bill=(calls-100)*.80;
else if(calls<=500)
 bill=(calls-200)*1.00+80;
else
 bill=(calls-500)*1.20+380;
printf("bill=%.2fRs",bill);
getch();
}

34. Wap to find out no. Is Armstrong or not.

#include<stdio.h>
#include<conio.h>
void main()
{ int n,sum=0,a,old;
 clrscr();
 printf("Enter a no");
 scanf("%d",&n);
 old=n;
 while(n!=0)
 {
 a=n%10;
 n=n/10;
 sum=sum+a*a*a;
 }
 if(sum==old)
 printf("ARMSTRONG");
 else
 printf("NOT ARMSTRONG");
 getch();
}
35. Wap to check a no. Is palindrome or not.

#include<stdio.h>
#include<conio.h>
void main()
{ int a;

 long int n,old,rev=0;
 clrscr();
 printf("Enter a no");
 scanf("%ld",&n);
 old=n;
 do
 {
 a=n%10;
 n=n/10;
 rev=rev*10+a;
 }while(n!=0);
 if(old==rev)
 printf("PALINDROME");
 else
 printf("NOT PALINDROME");
 getch();
}

36. Wap to check whether a no. Is prime or not.

#include<stdio.h>
#include<conio.h>
void main()
{
int n,i,prime=1;
 clrscr();
 printf("Enter a no");
 scanf("%d",&n);
 for(i=2;i<=n/2;i++)
 { if(n%i==0)
 { prime=0;
 break;
 }
 }
 if(prime==1)
 printf("Prime no");
 else

 printf("Not prime no");
 getch();
}

37 . Wap to reverse of a given no.
#include<stdio.h>
#include<conio.h>
void main()
{
int a;
 long int n,rev=0;
 clrscr();
 printf("Enter a no");
 scanf("%ld",&n);
 do
 {
 a=n%10;
 n=n/10;
 rev=rev*10+a;
 }while(n!=0);
 printf("%ld",rev);
 getch();
}

38. Wap to print table of any no.
#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,a;
Clrscr();
Printf(“\n Enter any no.”);
Scanf(“%d”,&n);
For(i=1; i<=n; i++)
{
a= n*i;
printf(\n Table is = %d*%d”,n,i,a);
}
getch();
}

39. Wap to print FIBBONACCI series.
#include<stdio.h>
#include<conio.h>
Void main()
{
Int a=1 ,b=0, c=0, n, i;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
Printf(“%d”,c);
c=a+b;
a=b;
b=c;
}
getch(); }
40. Wap to print sequence 1,3,5,7,9.....n

#include<stdio.h>
#include<conio.h>
Void main()
{
Int s=1,n, i;
Clrscr();
Printf(“Enter how many terms u want to print ”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++;s+2)
Printf(“%d”,s);
getch();
}

41. Wap to print 2,4,6,8,10.........n

#include<stdio.h>
#include<conio.h>
Void main()
{

Int s=2, n, i;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++,s+=2)
Printf(“%d”,s);
getch();
}

42. Wap to print sequence 1,4,9,16,25,..............n

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i;
Clrscr();
Printf(“Enter how many terms u want to print ”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
Printf(“%d”, i*i);
getch();
}
43. Wap to print 1 / 1! + 2 / 2! +3 / 3! +..............n

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, s=1;
Float fact=1;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)

{
Fact = fact* i;
Printf(“%f +”, i / fact);
}
getch();
}

44. Wap to print 1 + x2/y2 + x4/y4 +......................n

#include<stdio.h>
#include<conio.h>
#include<math.h>
Void main()
{
Int n, i,p=2,x,y;
Float s,N,D;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
Printf(“Enter the value of x and y”);
Scanf(“%d%d”,&x,&y);
Printf(“1+”)
For (i=1 ; i<=n ; i++)
{
N=pow(x,p);
D=pow(y,p);
S=N/D;
Printf(“%F +”,S);
P=P+2;
}
getch();
}
45. Wap to print 1+X2 /Y + X4/Y3 +.....N.

#include<stdio.h>

#include<conio.h>
#include<math.h>
Void main()
{
Int n, i,p=2,q=1,x,y;
Float s,N,D;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
Printf(“Enter the value of x and y”);
Scanf(“%d%d”,&x,&y);
Printf(“1+”)
For (i=1 ; i<=n ; i++)
{
N=pow(x,p);
D=pow(y,q);
S=N/D;
Printf(“%F +”,S);
P=P+2;
Q=q+2;
}
getch();
}
46. Wap to print 1-X2 /Y + X4/Y3 -.....N.

#include<stdio.h>
#include<conio.h>
#include<math.h>
Void main()
{
Int n, i,p=2,q=1,x,y;
Float s,N,D;
Clrscr();
Printf(“Enter how many terms u want to print series”);
Scanf(“%d”,&n);
Printf(“Enter the value of x and y”);
Scanf(“%d%d”,&x,&y);
Printf(“1-”)
For (i=1 ; i<=n ; i++)
{

N=pow(x,p); D=pow(y,q); S=N/D;
If(i%2==o)
Printf(“%f -”,s);
else
Printf(“%f +”,S);
P=P+2;
}
getch(); }
47. Wap to print following shape with the help of loops.

*
**

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; i<=i; j++)
Printf(“*”);
Printf(“\n”);
}
getch();
}

48. Wap print this shape.

**
*

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=n ; i>=1 ; i++)
{
For (j=5 ; j>=i; j--)
Printf(“*”);
Printf(“\n”);
}
getch();
}
49. print this shape.

1
12
123
1234
12345

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%d”, j);

Printf(“\n”);
}
getch();
}

50. Wap to print this shape.

1
22
333
4444
55555

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%d”, i);
Printf(“\n”);
getch();
}

51. Wap to print this shape.

1
2 3
4 5 6
7 8 9 10
11 12 13 14 15

#include<stdio.h>
#include<conio.h>
Void main()
{

Int n, i, j,k=1;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%d”, k++);
Printf(“\n”);
}
getch();
}

52. Wap to print this shape.

A
AB
ABC
ABCD
ABCDE

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
char ch;
ch='A' ;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%c”, ch++);
Printf(“\n”);
}
getch(); }
53. Wap to print this shape.

A

BB
CCC
DDDD
EEEEE

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
char ch;
ch='A' ;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%c”,ch);
ch++;
Printf(“\n”);
}
getch();
}

54. Wap to print this shape.

A
BC
DEF
GHIJ
KLMNO

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n, i, j;
char ch;
ch='A' ;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1 ; i<=n ; i++)
{
For (j=1 ; j<=i; j++)
Printf(“%c”,ch++);
Printf(“\n”);
}
getch();}
55.WAP TO PRINT THIS STARS SHAPE.

 *

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{
For (j=1;j<=n-i;j++)
Printf(“ ”);
for(k=1;k<=2*i-1;k++)
printf("*");
Printf(“\n”);
}
getch();
}

56. Wap to print this shape.

 *

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();

Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=n;i>=1;i--)
{
For (j=1;j<=n-i;j++)
Printf(“ ”);
for(k=1;k<=2*i-1;k++)
printf("*");
Printf(“\n”);
}
getch();
}

57. Wap to print this star shape in this form.
 *

 *

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{
For (j=1;j<=n-i;j++)
Printf(“ ”);
for(k=1;k<=2*i-1;k++)

printf("*");
Printf(“\n”);
}
for (i=n-1;i>=1;i--)
{
For (j=1;j<=n-i;j++)
Printf(“ ”);
for(k=1;k<=2*i-1;k++)
printf("*");
Printf(“\n”);
}
getch();
}
58. Wap to print this star shape in this form.

 *

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=n;i>=1;i--)
{
For (j=1;j<=n-i;j++)

Printf(“ ”);
for(k=1;k<=2*i-1;k++)
printf("*");
Printf(“\n”);
}
for (i=2;i<=n;i++)
{
For (j=1;j<=n-i;j++)
Printf(“ ”);
for(k=1;k<=2*i-1;k++)
printf("*");
Printf(“\n”);
}
getch();
}

59. Wap to print this binary shape.

 10000
 01000
 00100
 00010
 00001

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{

For (j=1;j<=n;j++)

if (i==j)
printf("1");
else
printf("0");
printf("\n");
}
getch();
}

60. Wap to print this binary shape.

 A
 ABA
 ABCBA
 ABCDCBA

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K,l;
char ch;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{
ch='A';
For (j=1;j<=n-i;j++)
print(" ");
for(k=1;k<=i;k++);
printf("%c",ch++);
ch=ch-2;
for(l=1;1<i;l++)
printf("%c",ch--);
printf("\n");

}
getch();
}

61. Wap to print this binary shape.

 1
 121
 12321
 1234321
#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K,l,m;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{
m=1;
For (j=1;j<=n-i;j++)
print(" ");
for(k=1;k<=i;k++);
printf("%d",m++);
m=m-2;
for(l=1;1<i;l++)
printf("%d",m--);
printf("\n");
}
getch();
}
62. Wap to print this shape.
 1
 12
 123
 1234

#include<stdio.h>
#include<conio.h>
Void main()
{
Int n,i,j,K;
Clrscr();
Printf(“Enter how many rows u want to print series”);
Scanf(“%d”,&n);
For (i=1;i<=n;i++)
{
For (j=1;j<=n-i;j++)
printf(" ");
for(k=1;k<=i;k++);
printf("%d",k);
print("\n");
}
getch();
}

ARRAYS

63. Wap to read an array of 20 integers and print sum of all Entered no.'s.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],i,sum=0;
Clrscr();
Printf(“Enter how many elements of this array series u want to Enter”);

For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
sum=sum+a[i];
}
printf("\n sum=%d",sum);
getch();

}
64. Wap to read an array of 20 integers and count total no's of even and
 odd elements.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],i,odd=0,even=0;
Clrscr();
Printf(“Enter how many elements of this array series u want to Enter”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
if (a[i] % 2==0)
 even++;
else
 odd++;
}
printf("\n even=%d, odd=%d",even,odd);
getch();
}
65. Wap to read an array of 20 integers and count total no's of pos. and
 neg. & zero elements.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],i,pos=0,neg=0,zero=0;
Clrscr();
Printf(“Enter how many elements of this array series u want to Enter”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
if (a[i]>0)
 pos++;
else if(a[i]<0)

 neg++;
else
 zero++;
}
printf("\n pos=%d, neg=%d, zero=%d",pos,neg,zero);
getch();
}

66. Wap to read an array of 20 integers and store Addition of those arrays
 in to third array.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],b[20],c[20],i;
Clrscr();
Printf(“Enter how many elements of the first array”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
}
Printf(“Enter how many elements of the second array”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&b[i]);
}
For (i=0;i<=19;i++)
{
c[i]=a[i]+b[i];
}
printf("\n Addition after first and second array \n");
for(i=0;i<=10;i++)
{
printf("%d",c[i]);
}
getch();
}

67. Wap to read two arrays of 10 integers and swap their values using
 third variable.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],b[20],c,i;
Clrscr();
Printf(“Enter how many elements of the first array”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
}
Printf(“Enter how many elements of the second array”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&b[i]);
}
/*swapping of arrays*/
for (i=0; i<19;i++)
{
c=a[i];
a[i]=b[i];
b[i]=c;
}
printf("\n after swapping first array \n")
for (i=0; i<19;i++)
{
printf("%d",a[i]);
}
printf("\n after swapping second array \n")
for (i=0; i<19;i++)
{
printf("%d",b[i]);
}
getch();

}

68. Wap to Reverse an Array.
#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[20],i,j;
Clrscr();
Printf(“\n Enter how many elements of the first array”);
For (i=0;i<=19;i++)
{
Scanf(“%d”,&a[i]);
}
for (i=0;j=10-1;i<10/2;i++;j--)
{
c=a[i];
a[i]=a[j];
a[j]=c;
}
printf("\n Reverse of array \n")
for (i=0; i<19;i++)
printf("%d",a[i]);
getch();
}
69. Wap to read a 3*3 matrix and find out max and min elements.
#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[5][5],i,j,min=-32767,max=-32768;
Clrscr();
Printf(“\n Enter elements of the matrix”);
For (i=0;i<=4;i++)
{
for (j=0; j<=4;j++)
{
scanf("%d",&a[i][j]);

if (max<a[i][j])
 max=a[i][j];
else if(min>a[i][j]
 min=a[i][j];
 }
}
printf("\n max=%d, min=%d", max,min);
getch();
}
70. Wap to read a 3*3 matrix and print sum of all rows.
#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[5][5],i,j,sum=0;
Clrscr();
Printf(“\n Enter elements of the matrix”);
For (i=0;i<=4;i++)
{
for (j=0; j<=4;j++)
 {
 scanf("%d",&a[i][j]);
 }
}
for (i=0;i<=4;i++)
{
sum=0;
for (j=0;j<=4;j++)
{
sum=sum+a[i][j];
}
printf("\n sum of %d row is =%d",i+1,sum);
}
getch();}
71. Wap to print 3*3 matrix and print its transpose.

#include<stdio.h>
#include<conio.h>

Void main()
{
Int a[3][3],i,j;
Clrscr();
Printf(“\n Enter elements of the matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&a[i][j]);
 }
}
printf("\n Transpose \n");
for (i=0;i<3;i++)
{
for(j=0;j<3;j++)
printf("%d",a[j][i]);
printf("\n");
}
getch();
}

72. Wap to read two 3*3 matrix and add their values in to third matrix.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[3][3],b[3][3],c[3][3]i,j;
Clrscr();
Printf(“\n Enter elements of first matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&a[i][j]);
 }
}

Printf(“\n Enter elements of second matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&b[i][j]);
 }
}
/* Addition of matrix*/
for (i=0;i<3;i++)
for(j=0;j<3;j++)
c[i][j]=a[i][j]+b[i][j];
printf("\n Addition of first and second matrix \n");
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 printf("%d",c[i][j]);
 }
printf("\n");
}
getch();
}

73. Wap to read two 3*3 matrix and subtract their values and store them
 in to third.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[3][3],b[3][3],c[3][3]i,j;
Clrscr();
Printf(“\n Enter elements of first matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {

 scanf("%d",&a[i][j]);
 }
}
Printf(“\n Enter elements of second matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&b[i][j]);
 }
}
/* Subtraction of matrix*/
for (i=0;i<3;i++)
 for(j=0;j<3;j++)
c[i][j]=a[i][j]-b[i][j];
printf("\n Subtraction of first and second matrix \n");
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 printf("%d",c[i][j]);
 }
printf("\n");
}
getch();
}

74. Wap to read two 3*3 matrix and multiply there values and store them
 in third matrix.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[3][3],b[3][3],c[3][3]i,j,k;
Clrscr();
Printf(“\n Enter elements of first matrix”);
For (i=0;i<3;i++)

{
for (j=0; j<3;j++)
 {
 scanf("%d",&a[i][j]);
 }
}
Printf(“\n Enter elements of second matrix”);
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&b[i][j]);
 }
}
/* Multiply of matrix*/
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 c[i][j]=0
for(k=0;k<3;k++)
 c[i][j]=c[i][j]+a[i][k]*b[k][j];
 }
}
printf("\n MULTIPLY OF BOTH MATRIX \n");
For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 printf("%d",c[i][j]);
 }
 printf("\n");
}
getch();
}

75. Wap to read an array and print the occurrence of any particular
 element.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[10],i,j,item,count=0;
Clrscr();
Printf(“\n Enter elements of array”);
For (i=0;i<10;i++)
 {
 scanf("%d",&a[i]);
 }
printf("\n Enter the element you want to count occurrence \n");
scanf("%d",item);
for (i=0;i<10;i++)
{
 if(a[i]==item)
 {
 count++;
 }
}
printf("\n No. Occurrence %d times",count);
getch();
}
76. Wap to read 2*2 matrix and convert it into third matrix.

#include<stdio.h>
#include<conio.h>
Void main()
{
Int a[3][3],i,j,r=0,c=0;
Clrscr();
Printf(“\n Enter elements of first matrix”);

For (i=0;i<3;i++)
{
for (j=0; j<3;j++)
 {
 scanf("%d",&a[i][j]);
 }
}
for(i=0;i<3;i++)
{
 r=c=0;
 for(j=0;j<3;j++)
 {
 r=r+a[i][j];
 c=c+a[j][i];
 }
a[2][2]=a[0][2]+a[1][2];
getch();
}

**STRINGS **

77. Wap to calculate length of a string.

#include<stdio.h>
#include<conio.h>

#include<string.h>
Void main()
{
char str[10];
int i,count=0;
clrscr();
printf("\n Enter a string \n");
gets(str);
for(i=0;str[i]!='\o';i++)
 count++;
printf("\n Length of the string is= %d",count);
getch();
}

78. Wap to copy a string into another string.

#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char s1[10],s2[10];
int i;
clrscr();

printf("\n Enter a string \n");
gets(s1);

for(i=0;s1[i]!='\o';i++)
 s2[i]=s1[i];
 s2[i]='\0';

puts(s1);
puts(s2);
getch();

}
79. Wap to concatenate two strings.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char s1[10],s2[10];
int i,j;
clrscr();
printf("\n Enter first string \n");
gets(s1);
printf("\n Enter second string \n");
gets(s2);
for(i=0;s1[i]!='\o';i++)
for(j=0;s2[j]!='\o';j++)
s1[i]=s2[j];
s1[i]='\0';
puts(s1);
getch();
}
80. Wap to compare two strings.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char s1[10],s2[10];
int i,f=0;
clrscr();
printf("\n Enter first string \n");
gets(s1);
printf("\n Enter second string \n");
gets(s2);
for(i=0;s1[i]!='\o' || s2[i]!='\0';i++)
{
if(s1[i]==s2[i])
continue;

else
{
f=s1[i]-s2[i];
break;
 }
}
if(f==0)
printf(" \n string are equal \n");
 else
printf("\n strings are not equal");
getch(); }
81. Wap to reverse a string.

#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char c, str[10];
int i,n;
clrscr();
printf("\n Enter a string \n");
gets(str);
n=strlen(str);
for(i=0,j=n-i;i<n/2;i++,j--)
{
 c=str[i];
 str[i]=str[j];
 str[j]=c;
}
printf("\n REVERSE IS \n");
puts(str);
getch();
}

82.wap to find occurrence of any particular character in a string.

#include<stdio.h>
#include<conio.h>
#include<string.h>

Void main()
{
char c, str[10];
int i,count=0;
clrscr();

printf("\n Enter a string \n");
gets(str);
printf("\n Enter a character \n");
scanf("%c"&c);
for(i=0;str[i]!='\o' ;i++)
{
 if (str[i]==c)
 count++;
}
printf("\n character comes in string %d times",count);
getch();
}
83. Wap to check whether a character is present in string or not.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char c, str[10];
int i,f=0;
clrscr();
printf("\n Enter a string \n");
gets(str);
printf("\n Enter a character u want to search \n");
scanf("%c"&c);
for(i=0;str[i]!='\o' ;i++)
{
 if (str[i]==c)
 {
 f=1;
 break;
 }

}
if(f==1)
printf("\n The character is present in string");
else
printf("\n The character is not present in string");
getch();
}
84. Wap to count total no. of vowels in a string.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10];
int i,vowel=0;
clrscr();
printf("\n Enter a string \n");
gets(str);
for(i=0;str[i]!='\o' ;i++)
{
 if(str[i]=='a' || str[i]=='e' || str[i]=='i' || str[i]=='o' || str[i]=='u')
 vowel++;
}
printf("\n total vowels in this string is=%d",vowel);
getch();
}
85. program to convert lower case to upper case.

#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10];
int i;
clrscr();
printf("\n Enter a string in lower case \n");
gets(str);

for(i=0;str[i]!='\o' ;i++)
{
 if(str[i]>=65 && str[i]<=90)
 continue;
 else
 str[i]=str[i]-32;
}
puts(str);
getch();
}

86. Wap to count lower case,upper case,digits,special symbols in given
 line of text.

#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10];
int i,lwr=0,upr=0,dig=0,ss=0;
clrscr();
printf("\n Enter a string \n");
gets(str);
for(i=0;str[i]!='\o' ;i++)
{
 if(str[i]>=65 && str[i]<=90)
 upr++;
else
 if(str[i]>=97 && str[i]<=122)
 lwr++;
else
 if(str[i]>=48 && str[i]<=57)
 dig++;
else
 ss++;
}
printf("\n Total upper case is=%d",upr);

printf("\n Total lower case is=%d",lwr);
printf("\n Total digit case is=%d",dig);
printf("\n Total sp.sym. case is=%d",ss);
getch();
}
87. Wap to count total char and words in a string.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10];
int i,chr=0,word=1;
clrscr();
printf("\n Enter a string \n");
gets(str);
for(i=0;str[i]!='\o' ;i++)
{
 chr++;
 if(str[i]==' ')
 words++;
}
printf("\n Total characters=%d",chr);
printf("\n Total words =%d",word);
getch();
}
88.wap to print ASCII values of Entered string or name.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10];
int i;
clrscr();
printf("\n Enter a string \n");
gets(str);
printf("\n ASCII values is \n");

for(i=0;str[i]!='\o' ;i++)
{
 printf("%d",str[i]);
}
getch();}
89.wap to replace char of string with another char.

#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char str[10],ch,chr;
int i,f=0;
clrscr();
printf("\n Enter a string \n");
gets(str);
printf("\n Enter the char which u want to replace \n");
scanf("%c"&ch);
printf("\n Enter the char by which u want to replace \n");
scanf("%c"&chr);
for(i=0;str[i]!='\o' ;i++)
{
 if(str[i]==ch)
 {
 str[i]=chr;
 f=1;
 }
}
if(f==0)
 printf("\n This Character is not present in this string");
getch();
}

90. Wap to convert first letter of each word in capital letter case.

#include<stdio.h>
#include<conio.h>

#include<string.h>
Void main()
{
char str[10];
int i;
clrscr();
printf("\n Enter a string \n");
gets(str);
if (str[0]>=97 && str[0]<=122)
 str[0]=str[0]-32;
for(i=0;str[i]!='\o' ;i++)
{
 if(str[i]==' ')
 if(str[i+1]>=97 && str[i+1]<=122)
 str[i+1]=str[i+1]-32;
}
puts(str);
getch();
}

91. Wap to find Length,Copy,concatinate,Compare,reverse-using pre-
 Define string functions.
#include<stdio.h>
#include<conio.h>
#include<string.h>
Void main()
{
char s1[30],s2[30];
int n;
clrscr();
printf("\n Enter first string \n");
gets(s1);
printf("\n Enter second string \n");
gets(s2);

/*To Find length of s1*/
n=strlen(s1);
printf("\n Length of first string is =%d",n);

/*To copy s1 into s2*/
strcpy(s2,s1);
puts(s2);

/*To concatenate s1 and s2*/
strcat(s1,s2);
puts(s1);

/*To compare s1 and s2*/
n=strcmp(s1,s2);
if(n==0)
 printf("\n strings are Equal")
else
 printf("\n string are Unequal");

/*To Reverse S1*/
strrev(s1);
puts(s1);
getch();
}

pointers

92. Wap to read Two variables and swap them by pointers.

#include<stdio.h>
#include<conio.h>
Void main()
{
int a,b,c,*p1,*p2;
clrscr();
printf("\n Enter Two Numbers \n");
scanf("%d%d",&a,&b);
/* Giving Variables References to Pointers */
p1=&a;
p2=&b;

/* swapping */
c=*p1;
*p1=*p2;
*p2=c;

printf("\n After swapping a=%d, b=%d",a,b);
getch();
}

93. Wap to read two no’s and add them by pointers.

#include<stdio.h>
#include<conio.h>
Void main()
{
int a,b,sum=0,*p1,*p2;
clrscr();
printf("\n Enter Two Numbers \n");
scanf("%d%d",&a,&b);
/* Giving Variables References to Pointers */
p1=&a;
p2=&b;

/* sum */
sum=(*p1)+(*p2);
printf("\n Sum=%d ",sum);
getch();
}

Pointers with Looping

94. Wap to read 'n' numbers and add them using pointers.

#include<stdio.h>
#include<conio.h>
Void main()

{
int a,n,i,sum=0,*p;
clrscr();
printf("\n Enter How Many no.'s u want to add? \n");
scanf("%d",&n);
/* Giving Variables References to Pointers */
*p=∑
for(i=0;i<=n;i++);
{
 printf("\n Enter a no.");
 scanf("%d",&a);
 *p=*p+a;
}
printf("\n Sum=%d ",sum);
getch();
}

Pointers operations with Arrays

95. Wap to read 10 elements in an array and add them using pointer.

#include<stdio.h>
#include<conio.h>
Void main()
{
int a[10],i,sum=0,*p;
clrscr();
printf("\n Enter ten numbers. \n");
for(i=0;i<10;i++);
scanf("%d",&a[i]);
/* Giving Variables References to Pointers */
*p=&a;
for(i=0;i<10;i++);
{
 sum=sum+(*p);
 p++;
}
printf("\n Sum of all arrays is =%d ",sum);
getch();
}

96. Wap to read two arrays of 10 elements and add-their values using
 pointer in third Array.

#include<stdio.h>
#include<conio.h>
Void main()
{
int a[10],b[10],c[10],i,*p1,*p2;
clrscr();
printf("\n Enter ten elements for first array. \n");
for(i=0;i<10;i++);
scanf("%d",&a[i]);
printf("\n Enter ten elements for second array. \n");
for(i=0;i<10;i++);
scanf("%d",&b[i]);
p1=a;

p2=b;
for(i=0;i<10;i++)
{
c[i]=(*p1)+(*p2);
p1++;
p2++;
}
printf("\n After addition third array");
for(i=0;i<10;i++)
printf("\n "%d",c[i] \n");
getch();
}

97. Wap to calculate Factorial using Pointer.

#include<stdio.h>
#include<conio.h>
Void main()
{
int n,*p,i,f=1;
clrscr();
printf("\n Enter Any number for Factorial.\n");
scanf("%d",&n);
p=&f;
for(i=0;i<=n;i++)
*p=*p*i;
printf("\n Factorial using pointer is =%d", f);
getch();
}

98. Wap to calculate length of a string using pointer.

#include<stdio.h>
#include<conio.h>
Void main()
{
char str[10],*p;
int count=0;

clrscr();
printf("\n Enter a string");
gets(str);
p=str;
while(*p!='\0')
{
 count++;
 p++;
}
printf("\n Length of string is =%d",count);
getch();
}

99. Wap to copy a string into another using pointers.

#include<stdio.h>
#include<conio.h>
Void main()
{
char s1[10],s2[10],*p1,*p2;
clrscr();
printf("\n Enter a string");
gets(s1);
p1=s1;
p2=s2;
while(*p1!='\0')
{
*p2=*p1;
p1++;
p2++;
}
*p2='\0';
puts(s1);
puts(s2);
getch();
}

100. Wap to concatenate two strings using pointers.

#include<stdio.h>
#include<conio.h>
Void main()
{
char s1[10],s2[10],*p1,*p2;
int i,j;
clrscr();
printf("\n Enter first string");
gets(s1);
printf("\n Enter second string");
gets(s2);
p1=s1;
p2=s2;
while(*p1!='\0')
{
p1++;
}
while(*p2!='\0')
{
*p1=*p2;
p1++;
p2++;
}
*p1='\0'
puts(s1);
getch();
}

101. Wap to compare two strings using pointers.

#include<stdio.h>
#include<conio.h>
Void main()
{
char s1[10],s2[10],*p1,*p2;
int i,f=0;
clrscr();

printf("\n Enter first string");
gets(s1);

printf("\n Enter second string");
gets(s2);

p1=s1;
p2=s2;

while(*p1!='\0' ||*p2!='\0')
{
if(*p1==*p2)
{
p1++;
p2++;
continue;
}
else
 {
 f=*p1-*p2;
 break;
 }
}
if (f==0)
 printf("\n string are equal");
 else
 printf("\n string are not equal");
getch();
}

STRUCTURES

102. WAP TO CREATE A STRUCTURE BOOK, READ AND DISPLAY INFORMATION OF
 A BOOK.

#include<stdio.h>
#include<conio.h>
Struct book
{
char name[10];
int pages;
float price;
};
void main()
{
struct book b;

 printf("\n Enter information about book");

 printf("\n Enter Name of the book");
 gets(b.name);

 printf("\n Enter total pages and price of the book");
 scanf("%d%f",&b.pages,&b.price);

 printf("\n Displaying information about book");
 printf("\n name =%s",b.name);
 printf("\n pages=%d",b.pages);
 printf("\n price=%d",b.price);
getch();
}

103. Wap to create a structure of student, read info. of ten students and
 print name of those students whose marks is grater then 90.

#include<stdio.h>
#include<conio.h>
Struct student
{
char name[10];
int r_no;
float marks;
};

void main()
{
struct student s[10];
int i;
printf("\n Enter info. about students");
for(i=0;i<10;i++)
{
 printf("\n Plz Enter the name of the student");
 gets(s[i].name);
 printf("\n Enter r_no and marks");
 scanf("%d %f",&s[i].r_no,&s[i].marks);
}
printf("\n name of those whose have >90"):
for (i=0;i<10;i++)
{
 if (s[i].marks>90)
 puts(s[i].name);
getch();
}

104. Wap to read personal info. of 10 peoples and print-details of those
 people living in particular city.

#include<stdio.h>
#include<conio.h>
#include<string.h>
struct personalinfo
{
char name[10];
char city[20];
char add [20];
};
void main()
{
struct personalinfo s[10];
int i,n;
char ct;
printf("Enter info of ten peoples");

for (i=0;i<10;i++)
{
 printf("\n Plz Enter the name of the Person");
 gets(s[i].name);
 printf("\n Plz Enter the name of the city");
 gets(s[i].city);
 printf("\n Plz Enter the address of the person");
 gets(s[i].add);
}
 printf("\n Enter the city whose persons detail u want display");
 gets(ct);
 for (i=0;i<10;i++)
{
 n=strcmp(s[i].city,ct);
 if(n==0)
{
 puts(s[i].name);
 puts(s[i].city);
 puts(s[i].add);
}
}
getch();
}

105. Wap to create a structure complex to model complex no. read two
 complex no. and add them.

#include<stdio.h>
#include<conio.h>
struct complex
{
float real,image;
};
void main()
{
 struct complex c1,c2,c3;
 printf("\n Plz Enter first complex no.");
 printf("\n Plz Enter the real part");

 scanf("%f",&c1.real);
 printf("\n Plz Enter the imagenary part");
 scanf("%f",&c1.image);
 printf("\n Plz Enter the second complex no.");
 printf("\n Plz Enter the real part");
 scanf("%f",&c2.real);
 printf("\n Plz Enter the imagenary part");
 scanf("%f",&c2.image);
c3.real=c1.real+c2.real;
c3.image=c1.image+c2.image;
 printf("\n sir After Adition both parts");
 printf("\n real = %f,image=%f",c3.real,c3.image);
getch();
}
106. Wap to create a structure Distance And read two distances in-feet
 and inches and print there Additions. okay !!

#include<stdio.h>
#include<conio.h>
struct distance
{
float feet,inch;
};
void main()
{
 struct distance d1,d2,d3;

 printf("\n Plz Enter first distance.");
 printf("\n Plz Enter the feets");
 scanf("%f",&d1.feet);
 printf("\n Plz Enter the inches");
 scanf("%f",&d1.inch);

 printf("\n Plz Enter second distance.");
 printf("\n Plz Enter the feets");
 scanf("%f",&d2.feet);
 printf("\n Plz Enter the inches");
 scanf("%f",&d2.inch);

 d3.feet=d1.feet+d2.feet;
 d3.inch=d1.inch+d2.inch;

while(d3.inch>=12)
{
 d3.feet++
 d3.inch=d3.inch-12;
} printf("\n sir After Adition both parts");
 printf("\n feet = %f,inches=%f",d3.feet,d3.inch);
getch();
}

107. Wap to create a Date structure and increase date by Addition No. of
 days and date should be valid.

#include<stdio.h>
#include<conio.h>
struct date
{
 int dd,mm,yy;
};
void main()
{
 struct date d;

 int date
 printf("\n Plz Enter days,month,year.");
 scanf("\n %d%d%d",&d.dd,&d.mm,&d.yy);

 printf("\n Plz Enter no. of days you want to add");
 scanf("%d",&day);

 d.dd=d.dd+day
while(d.dd>=30)
{
 d.mm++;
 d.dd=d.dd-30;
}
while(d.mm>12)
{
 d.yy++;
 d.mm=d.mm-12;
}

 printf("\n sir DateAfter Aditions");
 printf("\n %d%d%d",d.dd,d.mm,d.yy);

getch();
}

108. Wap to read info of 20 books and print names and author names of those
books whose price is more than 1000 Rs.

#include<stdio.h>
#include<conio.h>

struct book

{
 char name[10];
 char aname[10];
 int pages;
 float prices;
};
void main()
{
 struct book b[20];
 int i;
 printf("\n Plz Enter info. of 20 books.");
 for(i=0;i<20;i++)
{

 printf("\n Plz Enter name of books.");
 gets(b[i].name);
 printf("\n Plz Enter name of author.");
 gets(b[i].aname);
 printf("\n Plz Enter total pages and price of book");
 scanf("%d%f",&b[i].pages,&b[i].price);
}

for(i=0;i<20;i++)
{
 if(b[i].price>1000)
{
 printf("\n name =%s",b[i].name);
 printf("\n Author Name =%s",b[i].aname);
 }
 }
getch();

}

** file Handling **

109. Wap to read a line of text from screen and store in to File.

#include<stdio.h>
#include<conio.h>
#include<stdlib>
#include<string.h>
void main()
{
 FILE *fp;
 char str[20];
 fp=fopen("sample.txt","w");
 printf("\n Enter a line of text");
 gets(str);
 fprintf(fp,"%s",str);
 fclose(fp);
getch();
}

110. Wap to read a line of text from a file and Display it.

#include<stdio.h>
#include<conio.h>
#include<stdlib>
#include<string.h>
void main()
{
 FILE *fp;
 char str[20];
 fp=fopen("sample.txt","r");
if(fp==null)
{

 printf("\n File doesn't exixt");
 exit(1);
}
 fscanf(fp,"%s",str);
 printf("\n file contains...");
 puts(str);
 fclose(fp);
 getch();
}
111. Wap to read 'n' names from user and store them into a file also
 create a copy of it into another file.

#include<stdio.h>
#include<conio.h>
#include<stdlib>
#include<string.h>
void main()
{
 FILE *fp1,*fp2;
 char str[20];
 int i,n;

fp1=fopen("file1.txt","w+");
printf("\n How many names u want to Enter");
scanf("%d",&n);

for(i=0;i<n;i++)
{
 printf("\n Enter the name");
 gets(str);
 fprintf(fp1,"\n %s",str);
}

rewind(fp1);
fp2=fopen("file2.txt","w");
while(!feof(fp1))
{
 fscanf(fp1,"\n %s",str); /*read from first file */

 fprintf(fp2,"\n%s",str); /*storing in to second file*/
 puts(str); /*Displaying on the screen */
}
getch();
}

112. Wap to count total no. of characters and words in a file.

#include<stdio.h>
#include<conio.h>
#include<stdlib>
void main()
{
 FILE *fp1;
 char c;
 int ch=0,word=1;

fp1=fopen("file1.txt","r");
if(fp1==null)
{
 printf("\n Sir File Doesn't Exixt");
 exit(1);
}
while(! feof(fp1))
{
 c=getc(fp1);
 ch++;
 if(ch==' ')
 word++
}
printf("\n Total Characters=%d",ch);
printf("\n Total words =%d",word);
getch();
}

Functions

113.wap which shows sending & receiving values between functions.

#include<stdio.h>
#include<conio.h>
int calsum(int x,int y,int z);/* function prototype*/
void main()
{
int a,b,c,sum;
printf("\n Enter any three numbers");
scanf("\n %d%d%d",&a,&b,&c);
sum=calsum(a,b,c); /*function calling*/
printf("\n Sum=%d",sum);
getch();
}

/*function defination or body*/
int calsum(int x,int y,int z)
{
int d;
d= x+y+z;
return(d);
}

114.wap to calculate square of no. with return type.

#include<stdio.h>
#include<conio.h>
float square(float);/* function prototype*/
void main()
{
float a,b;
printf("\n Enter any number");
scanf("\n %f",&a);
b=square(a);
printf("\n square of %f is %f",a,b);

getch();
}
float square(float x)
{
 float y;
 y=x*x;
 return(y);
}

115. Wap to swap two values using functions call by value.

#include<stdio.h>
#include<conio.h>
void myswap(int x,int y);/* function prototype*/
void main()
{
 int a=10,b=20;
 myswap(a,b);
 printf("\n a=%d,b=%d",a,b);
getch();
}
void myswap(int x, int y)
{
int t;
t=x;
x=y;
y=t;
printf(\n x=%d,y=%d",x,y);
}

116. Wap to swap two values using functions call by reference.

#include<stdio.h>
#include<conio.h>

void myswap(int*,int*);/* function prototype*/
void main()
{
 int a=10,b=20;
 myswap(&a,&b);
 printf("\n a=%d,b=%d",a,b);
getch();
}
void myswap(int *x,int *y)
{
int t;
t=*x;
*x=*y;
*y=t;
}

117. Wap to calculate area & perimeter using call by reference.

#include<stdio.h>
#include<conio.h>
void areaperi(int,float*,float*);/* function prototype*/
void main()
{
 int radius;
 float area,perimeter;
 printf("\n Enter radius of a circle");
 scanf("%d",&radius);
 areaperi(radius,&area,&perimeter);

 printf("\n Area =%f",area);
 printf("\n Perimeter=%f",perimeter);
getch();
}
void areaperi(int r,float *a,float *p)
{
*a=3.14*r*r;

*p=2*3.14*r;
}

Recursion

Drill Note- when functions calls themselves known as recursion.
Drill Note- when any function calls himself known as recursive function.

118. Wap to calculate factorial without Recursive Function.

#include<stdio.h>
#include<conio.h>
int factorial(int); /* function prototype*/
void main()
{
 int a,fact;
 printf("\n Enter any number");
 scanf("%d",&a);

 fact=factorial(a);
 printf("Factorial value=%d",fact);
getch();
}
int factorial(int x)
{
 int f=1;
 int i;
for(i=x;i>=1;i--)
f=f*i;
return(f);
}

119.wap to calculate factorial using Recursive Function.

#include<stdio.h>

#include<conio.h>
int rec(int); /* function prototype*/
void main()
{
 int a,fact;
 printf("\n Enter any number");
 scanf("%d",&a);

 fact=rec(a);
 printf("Factorial value=%d",fact);
getch();
}
int rec(int x)
{
 int f;
 if(x==1)
 return(1);
else
 f=x*rec(x-1);
 return(f);
}

120. Wap to built mini calculator using function.

#include<stdio.h>
#include<conio.h>
int addi(int,int); /* function prototype*/
int subt(int,int); /* function prototype*/
int multi(int,int); /* function prototype*/
float div(int,int); /* function prototype*/
void main()
{
 int a,b,result,option;

 printf("\n\t\t\t Wel come to EvC iNSTITUTE JAIPUR");

 printf("\n\t\t\t plz Enter the values of a and b");
 scanf("%d%d",&a,&b);

 printf("\n\t\t\t Menu::-");
 printf("\n\t\t\t Enter 1 for Addition");
 printf("\n\t\t\t Enter 2 for subtraction");
 printf("\n\t\t\t Enter 3 for multiply");
 printf("\n\t\t\t Enter 4 for Division");
 printf("\n\t\t\t so, Select Your Option(1-4)");
 scanf("%d",&option);

switch(option)
{
case 1:
{
 result=addi(a,b); /* function calling*/
 printf("%d",result);
 break;
}
case 2:
{
 result=subt(a,b); /* function calling*/
 printf("%d",result);
 break;
}
case 3:
{
 result=multi(a,b); /* function calling*/
 printf("%d",result);
 break;
}
case 4:
{
 result=div(a,b); /* function calling*/
 printf("%f",result);
 break;

}
default:
{
 printf("\n\t\t u have Entered out of option okay!!");
 }
}
getch();
}

int addi(int a, int b) /* function body & definition*/
{
 return(a+b);
}
int subt(int a, int b) /* function body & definition*/
{
 return(a-b);
}
int multi(int a, int b) /* function body & definition*/
{
 return(a*b);
}
float div(int a,int b) /* function body & definition*/
{
 float z;
 z=(float) (a/b);
 return(z); /* function return type */
}

CHAPTER
∞ 18- Part –II ∞

(Creating & inserting own functions in to c library.)

Creating & inserting own functions in to c library.

As You all know very well most of time we use standard "c" library functions-or
sometimes user define functions. But the most things that I want to show u here. how we
can add our own made "c" functions to the pretty-"c"-Standard library??

Yes its possible it’s a Experts approach in "c" -programming. After addition
of our user define functions in to standard C library-we can easy access them any time
read steps.

Step 1 -

Most of "c" compiler provide a special option menu in compiler utility by the
use of this utility we easily can perform this task. i think in Turbo c/c++ compiler that
provides a utility called "tlib.exe", Turbo Librarian. let-us use this utility and add
function to "c" library.

Step 2 –

Here I’m adding my factorial function to "c" library -
(a) Write a function definition of factorial() in some file, may be fact.c

 int factorial(int num)
 {
 int i,f=1;
 for(i=1;i<=num;i++)
 f=f*i;
 return(f);

 }

(b) compile this "fact.c" file using Alt+f9, now automatically a new file called
"fact.obj" will get created containing the compiled code in machine language.

(c) add the function to the library "maths.lib" by issuing the following command-
c:\>tlib maths.lib+c:\fact.obj

Here,"maths.lib" is library file name,+ is a switch, and c:\fact.obj is a path of
our file to be adding in maths.lib

(d) declare the prototype of factorial() function in the header file, say "fact.h",
This file should be include while calling the function don’t forget it .

(e) For example look here how we use or call our added function in any
 program-

 #include "c:\fact.h"
 #include<stdio.h>
 #include<conio.h>
 void main()
{
 int f;
 f=factorial(5);
 printf("%d",f);
 getch();
}

Deleting own functions in c library.

Step - just use minus sign in between this

(c) add the function to the library "maths.lib" by issuing the following command-
c:\>tlib maths.lib-c:\fact.obj

Creating Own C Libraries-
Suppose u want to create own library in which have three or more wish own

functions like:

1. factorial()

 2. prime()
 3. Fibonacci()
Note :
I think this will work in Turbo c/c++ compilers only. follow my following—

Step 1 -

 Define the functions factorial(), prime(), fibonacci() in a file say,
'myfuncs.c'. Do not define main() in this file.

 int factorial(int);
 int prime(int);
 void fibonacci(int);
Step 2:-
From the option menu of compiler select the option 'Application' now from the dialog
box pops up menu select the option 'library' then

Step 3:-
Compile the program using Alt+f9. this would create the library file called
'myfuncs.lib'.

Step: 4:-
That’s complete wow!! your library now stand created. now u can easily use these
functions i will show u how use earlier created function lib.

 #include<stdio.h>
 #include<conio.h>
 #include"myfuncs.h"
 void main()
{
 int f,result;
 f=factorial(5);
 result=prime(13);
 fibonacci(6);
 printf("\n %d %d",f,result);
getch(); }
Note:-

The file 'myfuncs.h' should be in the same dir as the file 'sample.c'. if not, then
while including 'myfuncs.h' mention the appropriate path.

Step:-

Go to compiler menu 'project' and select 'open project' option. then pop up
come give the name of project, say 'sample.prj' then ok.

Step:-

From project menu select 'Add item', on doing so a file dialog would appear.
select the file 'sample.c' and then select 'Add', Also add the file 'myfuncs.h.lib' in the
same previous manner select Done!

step:-
 Compile and execute the project using ctrl+f9.

CHAPTER
∞ 19- Part –II ∞

(Graphics programming)

*****Graphics programming*****

Introduction-

 To run graphics codes, make sure, you have installed graphics driver
Software in your operating system. Some graphics codes require more than –
250 MB memory Graphics card.

130. Wap to draw ellipse or circle in "c".

#include<stdio.h>
#include<conio.h>
#include<graphics.h>'
void main()
{
int gd=DETECT,gm; /*initiate graphics mode*/
intgraph(&gd,&gm,""); /*initiate graphics driver & mode*/

circle(200,200,100); /*To draw a circle*/
ellipse(450,200,0,360,150,100);
outtextxy(175,200,"circle");
outtextxy(425,200,"ellipse");
getch();
}
131. Wap to draw a rectangle using line functions(All three).

#include<stdio.h>
#include<conio.h>
#include<graphics.h>'
void main()
{
int gd=DETECT,gm; /*initiate graphics mode*/
intgraph(&gd,&gm,""); /*initiate graphics driver & mode*/
line(75,50,200,50);

line(200,50,200,100);
line(200,100,75,100);
line(75,100,75,50);
outtextxy(10,50,"(50,50)");
outtextxy(200,50,"(200,50)");
outtextxy(200,100,"(200,100)");
outtextxy(10,100,"(50,100)");
outtextxy(75,115,"(50,100)");
moveto(75,150); /*it moves starting position*/
lineto(200,150);
lineto(200,200);
lineto(75,200);
lineto(75,150);
outtextxy(75,215,"using function lineto()");
moveto(75,250);
linerel(125,0);
linerel(0,50);
linerel(-125,0);
linerel(0,-50);
outtextxy(75,315,"using function linerel()");
getch();
}

132. Wap to draw rectangle with different line styles.

#include<stdio.h>
#include<conio.h>
#include<graphics.h>'
void main()
{
int gd=DETECT,gm; /*initiate graphics mode*/
intgraph(&gd,&gm,"");/*initiate graphics driver & mode*/
setlinestyle(1,0,3);
line(75,50,200,50);
line(200,50,200,100);
line(200,100,75,100);
line(75,100,75,50);
outtextxy(10,50,"(50,50)");
outtextxy(200,50,"(200,50)");

outtextxy(200,100,"(200,100)");
outtextxy(10,100,"(50,100)");
outtextxy(75,115,"(50,100)");
setlinestyle(2,0,1);
moveto(75,150); /*it moves starting position*/
lineto(200,150);
lineto(200,200);
lineto(75,200);
lineto(75,150);
outtextxy(75,215,"using function centreline()");
setlinestyle(0,0,3);
movrto(75,250);
linerel(125,0);
linerel(0,50);
linerel(-125,0);
linerel(0,-50);
outtextxy(75,315,"using function solidline()");
getch();
}

Other Graphics commands or functions you can use any function like-

1, bar() -used for draw a bar.
 syntax:- bar(int left,int top,int right,int bottom);

2, bar3d() -used to draw a 3d bar.
 syntax:- bar3d(int left,int top,int right,int bottom,int depth,int top flor);

3, cleardevice() - used to clear graphics screen.
 syntax:- cleardevice();

4, closegraph() - its danger it shutdown the graphics system.
 syntax:- closegraph();

5, drawpoly() - it draw the outline of polygon
 syntax:- drawpoly(int numpoints,int farpolypoints)

6, getbkcolor - it return the back color.
 syntax:- int A= getbkcolor();

7, getcolor() -it return the current drawing color.
 syntax:- int A= getcolor();

8, getmaxx() - return the maximum value of x screen.
 syntax:- int A= getmaxx();

9, getmaxy() - returns maximum value of y screen.
 syntax:- int A= getmaxy();

10, getpixel() - it get color of a specified pixel.
 syntax:- unsigned A= getpixel(int x,int y);

11, getx() - it return the current position of x.
 syntax:- int A= getx();

12, gety() - it return the current position of y.
 syntax:- int A= gety();

13, outtext() - it display a string in current position of x and y in graphics mode.
 syntax:- outtext("string");

14, outtextxy() - it display a string in specify location in graphics mode.
 syntax:- outtextxy(int x,int y,"string");

15, setbkcolor() - if set the back ground color.
 syntax:- setbkcolor(int color);

16, setcolor() - set drawing color.
syntax:- setcolor(int color);

Drawing and filling Images functions-

1, EMPTY-FILL 0 -TO FILL BACKGROUND COLOR.
2, SOLID-FILL 1 -FILL AREA BY BG COLOR.
3, LINE-FILL 2 -FILL AREA BY SMACK BG COLOR.
4, BKSLASH-FILL 3 -FILL WITH THICK LINE.
5, HATCH-FILL 7 -FILL WITH LIGHT HATCH LINE.

6, XHATCH-FILL 8 -HEAVY CROSS HATCH FILL.
7, INTERLEAVE-FILL 9 -INTERLEAVING LINE FILL.
8, WIDE-DOT-FILL 10-WIDELY SPACES DOT FILL.
9, CLOSE-DOT-FILL 11-CLOSE SPACES DOT FILL.
10,USER-FILL 12-USER DEFINE FILL.

CHAPTER
∞ 20- Part –II ∞

(Operating System Development)

Introduction of Operating System Development-

(1) powerful API functions.
(2) sharing of functions.
(3) look and feel for application.
(4) Hardware-independent programming.

(5) Event-Driven programming model
(6) Dos model.

1. Powerful API Functions.

windows provide functions within itself which can be called by other user
define or library functions.thease windows functions called API. Application
Programming Functions. there are literally hundreds of very rich functions available.

They help an application perform not only the simple task like creating
window, drawing a line, performing file i/o but also complicated tasks like connecting
to ports, interfacing to the networks, modifying the bitmap, playing a mp3 file. etc.the
key to windows-programming is to udrstd these API functions and use them effectively
to create rich applications with effortless ease.
2. Sharing of functions.

During the Execution windows program calls several API functions. Imagine
how much disk space would have been watage had each of these functions became part
of the .Exe file of the each program. to avoid this, the API, Functions are defined in
special files that have a special extension .DLL,the .DLL stand for Dynamic Link
Liberary.

Thaese are binary files.the functions presented in .dll files can be linked during

the Execution or installing time.these all functions can share for calling each other when
several programs running under windows.

These functions linking with each other is done dynamically.(during execution)

the functions do not became part of the executable file.as a result the size of the Exe
files doesn’t go out of the hand. it is also possible to create your own DLLs. because of
the two reasons u need to do this.

(a)sharing common code between different executable files.
(b)Breaking the Applications in to components parts known as segments.

Provide the way to easily upgrade Application's Components.

3.Look and feel Consistent:

This means that each program offers a consistent and semi liar user interface.

As a result, user doesn’t have to spend long periods of times mastering a new
program.Every program occupies a window-a rectangle area on the computer screen, a
window is Identified by its personal title bar.

Most programs functions are initiated throughThe program's menu. If info. Is

large then use of scroll bars, dialog boxes for Entering Some user info. Once u know
how to use one window program, then u can easily understand Another. Keyboard and
mouse interfacing.

4.Hardware Independent Programming:

As I tell u that a window program can easily call windows API Function. thus an
application can easily communicate with operating system, how windows easily
communicate with hardware ?

suppose we have a written program that contains a menu item, which on
selection is suppose to display a string "wel come to eve reserch labs India" in the
window. the menu item can be selected by keyboard or using the mouse. on executing
this program it will perform initialization and then wait for the user input.

After input by user any key or click the mouse to select the menu item. the key-
press or mouse-click is known as an 'event' as u know Visual Basic programming.the
occurrence of this event is sensed by the keyboard or mouse driver. the device driver
would now informed windows about it.

Windows would in turn notify the application about the occurrence of this

event of this particular event. this notification known as "message". thus the o.s has
communicated with application.

When than application receive the message, it communicated back with the o.s

by the calling a windows API function to display the string "wel come to EVC reserch
labs India" in this API function in turn communicates with the device driver of the
graphics card that drives the screen, to display the string. thus there is a two-way
communication between the o.s and the application.

5.Event Driven Programming model.

When a user intract with windows program a lot of events occur.for each event
a message is sent to the program and the program reacts to it.since the order in which
the user would interact with the user-interface elements of the program can not be
predicted the order of occurrence of events.

And hence the order of the messages,also became unpredictable.as the

result,the order of calling the functions in the program (that react to different messages)
is dicatated by the order of occurrence of events. Hence this programming model is
called “Event Driven Programming Model”.

There can be hundreds of the ways in which the user may interact with an

application. In addition to this , some events may occur without any user user
interaction. For example, events occur when we create a window, when the window
contant are to be drawn,etc.

Thus ,literally hundereds of the messages may be sent to an application thereby

creating a chaos. Naturally a question comes- in which order would thease messages get
processed by the application. Order is brought to this chaos by putting all the messages
that reach the application into a “Queue”. The messages in the queue are processed in
first in first out (FIFO) Algorithm order.

In fact the o.s maintains several such queues. There is one queue, which is

common for all application. This queue is known as “system Message Queue”. In
addition, there is one queue per application. Such queues are called “Application
Message Queue”. Let understand the need for maintaining so many queues.

When we click a mouse and an event occurs the device driver posts a message
into the system message queue. The OS retrives this message finds out with regard to
which application the message has been sent. Next it posts a message into the
Application Message Queue of the application in which the mouse was clicked.

Thus really all that is there to event-driven programming. Your job is to

anticipate what user are likely to do with ur Application’s user interface objects and
have a function waiting,Ready to execute at the appropriate time.just when that time is,
no one except the user really wanna to say.

You need to understand this first that the difference of simple software
programming and window o.s development programming, the window programming
model is in the “MACRO” level, let us dig futher and see some obvious issues that will
need while u developing programming for the window o.s enviornment.

There are following issues:-

(A) SIZE OF POINTERS.
(B) SIZE OF INTEGERS.

(C) HEAVY USE OF typedef.

1. SIZE OF POINTERS:

 You must know that window permits multiple programs to co-
exixt in memory at that time it needs powerful 32-bit microprocessor to execute thease
programs and simple memory to house them. Whenever we store a value at a memory
location the address of this memory location has to be stored first in the c.p.u register at
the same point in time.

And one most thing the Amount of memory that a microprocessor can access
depends on the size of the cpu registers. This means we can store 232 unique addresses
in the cpu registers at different times, as a result, we can access 4 GB memory locations
using 32-bit registers. In our programs the 32 bit address have to be stored in
pointers,do not forget that every pointer under 32-bit environment is a 4 byte entity.

2. SIZE OF INTEGERS:

I wanna to tell u that in 16 bit environment the size of integer is of 2 bytes, in
the other hand in 32 bit environment the size of the interger is of 4 bytes. After 32 bit the
range of interger is going to be -2147483648 to +2147483647. By this u think there is
know difference between int and long int, but what if we wish to store age of person?
And we know that age is going to be hardly 100,in such case its best to use short int. 3
3. HEAVY USE OF typedef:

If I write the following declairations--
HANDLE h;
WAPRAM w;
LPARAM I;

Is theae are the data types?
No, they are typedef’s okay.
Why c program under windows used heavily typedef?
Its have a 2 reasons!!

(A)

A typical window program is required to perform several complex tasks for
ex:- print documents, send mails, performing i/o , managing multiple threads , data
processing tasks etc. all of thease used to need integers. But if we use normal interger

datatype to represent normal variables that holds different entities, then we will soon
lose the track of what the integer values actually represents, this is handle by use of
typedef’s okey!!

(B)

In window programming at several places we are requre to gather and work
with disimiliar but inter-related data’s. this can be done using a structure.

Most notes-

Use a 32 bit compiler for window programming like visual c++.

Use the header file windows.h

Oue first “c” under windows programming.

150. wawpuc that print hello! With the help of 32 bit ex: ms visual c++
 compiler.

#include<windows.h>
Int_stdcall WinMain(HINSTANCE hlnstance, HINSTANCE hprevlnstance,
LPSTR pszCmdline, int
nCMDShow)
{
MessageBox(0,”Hello!”,”Title”,0);
Return(0);
}
Heavey Mind Wash Drill Note -

1,

Always use a 32 bit compiler for 32 bit operatong system development
like microsoft visual c++,Or for 64 bit operating system development use 64
bit compiler okey!!

2,

I want to tell you that every dos programs execution begains with main()
function in the other hand every window program begains its execution with
WinMain() function as u see before.

3,

_stdcall is used before WinMain()- its show the calling conventions used by
WinMain() function,calling conventions indicate two thing:

(a)

The order (left to right or right to left) in which the arguments are pushed onto
the stack when a function call is made.!

(b)

The caller function or called function removes the arguments from the stack at
the end of the call. There are many calling conventions avilable like _cdecl and
_stdcall both of these calling conventions pass arguments from right to left. All
API functions use _stdcall if not mentioned then compiler assumed _cdecl
conventions okey!!

4,

HINSTANCE and LPSTR are nothing but typedef’s. The first is an unsigned
int and second is a pointer to a char. These typedefs are defined in
‘windows.h’. this header file always cointain these typedef’s while writing any
“c” under windows program.

5,

hInstance, hpPrevInstance, lpszCmdLine and nCmdShow are variable
namesu can also used variable names like i,j,k any in replace of them.

Explanation of whole program:-

WinMain() recive four parameters which are as under:

hInstance:

This is a “instance handle” for the running Application. Windows create this id

number when the Application start. We will use this value in many windows functions
to identify an application Data. And the most thing, handle is simply a 32 bit number that
refers to an entity, entity may be a curser or the brush,icon a file,device anything okey!!

hPrevInstance :

This parameter is a remnant of earlier version of windows now this is no
longer use hence its value cointains 0. This show only the backward compatibility.

lpszCmdLine:-

This is a pointer to a character string containing the command line arguments
passed to the program. This is semilior to the argv, argc parameters passed to main()
just like in a Dos Program.

nCmdShow:-

This is an interger value that is passed to the function. This interger tells the
program how the window should appear when it is displayed for the first time.

MessageBox()

Function this function pops up a message box whose title is ‘Title’ and which

cointain a message ‘Hello!’

Returning 0 from WinMain() indicate success, or non zero value show failure.

CHAPTER
∞ 21- Part –II ∞

(Programming Guidelines)

Introduction-

This Chapter explains how to write computer programs that work and that are
understandable to other intelligent beings! This two attributes are not independent! In
general, programs that other programmers cannot understand do not work very well.
(Not to mention the fact that they are maintenance nightmares!)

Writing structured programs (structured code and data!) helps greatly in
debugging the code. Here is a quick review of some of the features of a structured
program.

1. Lots of well-defined functions!
2. Using structured loop constructs (i.e., while and for) instead of goto.
3. Using variables that have one purpose and meaningful names.
4. Using structured data types to represent complex data.
5. Using the ADT (Abstract Data Type) or OOP (Object-Oriented

Programming) paradigm of programming.
1. How to Start

The most common types of mistakes when programming are:

1. Programming without thinking.

2. Writing code in an unstructured manner.
Let's take these in order

1.1 Thinking about Programming.-

When a real programmer (or programming team) is given a problem to
solve, they do not immediately sit down at a terminal and start typing in code!
They first design the program by thinking about the numerous ways the problem's
solution may be found.

One of the biggest myths of programming is that: The sooner I start coding

the sooner a working program will be produced. This is NOT true!! A program
that is planned before coding will become a working program before an
unplanned program.

Yes, an unplanned program will be typed in and maybe compiled faster, but

these are just the first steps of creating a working program! Next comes the
debugging stage.

This is where the benefits of a planned program will appear. In the vast

majority of the time, a planned program will have fewer bugs than an unplanned
program. In addition, planned programs are generally more structured than
unplanned programs. Thus, finding the bugs will be easier in the planned program.
So how does one design a program before coding? There are several different
techniques. One of the most common is called top-down design. Here an outline
of the program is first created. (Essentially, one first looks at the general form of
the main() function and then recursively works down to the lowest level
functions.) There are many references on how to write programs in this manner.
Top-down design divides the program into sub-tasks. Each sub-task is a smaller
problem that must be solved. Problems are solved by using an algorithm.

Functions (and data) in the program implement the algorithm. Before writing the
actual code, take a very small problem and trace by hand how the chosen
algorithm would solve it.

This serves several purposes:
1. It checks out the algorithm to see if will actually work on the given

problem. (If it does not work, you can immediately start looking for
another algorithm. Note that if you had immediately starting coding you
would probably not discover the algorithm would not work until many lines

of code had been entered!)

2. Makes sure that you understand how the algorithm actually works! (If you

cannot trace the algorithm by hand, you will not be able to write a program
to do it!)

3. Gives you the detail workings of a short, simple run of the algorithm that

can be used later when debugging the code.
Only when you are confident that you understand how the entire program will look
should you start typing in code.
1.2 Structured Programming.-

When a program is structured, it is divided into sub-units that may be tested
separately. This is a great advantage when debugging! Code in a sub-unit may be
debugged separately from the rest of the program code. I find it useful to debug
each sub-unit as it is written. If no debugging is performed until the entire program
is written, debugging is much harder.

The entire source of the program must be searched for bugs. If sub-units are
debugged separately, the source code that must be searched for bugs is much
smaller! Storing the sub-units of a program into separate source files can make it
easier to debug them separately.
The ADT and OOP paradigms also divide programs into sub-units. Often with
these methods, the sub-units are even more independent than with normal
structured code. This has two main advantages:

1. Sub-units are even easier to debug separately.
2. Sub-units can often be reused in other programs. (Thus, a new program can

use a previously debugged sub-unit from an earlier program!)

Sub-units are generally debugged separately by writing a small driver program.
Driver programs set up data for the sub-task that the sub-unit is supposed to solve,
calls the sub-unit to perform his sub-task, and then displays the results so that they
can be checked.

Of course, all the following debugging methods can be used to debug a sub-
unit, just as they can be used to debug the entire program. Again, the advantages of
sub-units are that they are only part of the program and so are easier to debug than
the entire program at once!
2. Compiling Programs-

http://www.drpaulcarter.com/cs/module.php

The first step after typing in a program (or just a sub-unit of a program) is to
compile the program. The compiling process converts the source code file you
typed in into machine language and is stored in an object file. This is known
as compiling.

With most systems, the object file is automatically linked with the system
libraries. These libraries contain the code for the functions that are part of the
languages library. (For example, the C libraries contain the code for
the printf() function.)
2.1 Compiler Errors-

Every language has syntax rules. These rules determine which statements
are legal in the language and which are not. Compiler programs are designed to
enforce these rules. When a rule is broken, the compiler prints an error message
and an object file is not created.

Most compilers will continue scanning the source file after an error and
report other errors it finds. However, once an error has been found, the compiler
made be confused by later perfectly legal statements and report them as errors.
This brings us to the first rule of compiler errors:

First Rule of Compiler Errors-
The first listed compiler error is always a true error; however, later
errors may not be true errors.

Succeeding errors may disappear when the first error is removed. So, if later
error messages are puzzling, ignore them. Fix the errors that you are sure are errors
and re-compile. The puzzling errors may magically disappear when the other true
errors are removed.

If you have many errors, the first error may scroll off the screen. One solution to
this problem is to save the errors into a file using redirection. One problem is that
errors are written to stderr not stdout which the > redirection operator uses.

To redirect output to stderr use the 2> operator.
Here's an example:

$cc x.c 2>errors
 $more errors

The compiler is just a program that other humans created. Often the error
messages it displays are confusing (or just plain wrong!). Do not assume that the line
that an error message refers to is always the line where the true error actually
resides.

The compiler scans source files from the top sequentially to the bottom.

http://www.drpaulcarter.com/cs/debug.php#structured
http://www.drpaulcarter.com/cs/unix-intro.php#Redirect

Sometimes an error is not detected by the compiler until many lines below where the
actual error is. Often the compiler is too stupid to realize this and refers to the line in
the source file where it realized something is wrong. The true error is earlier in the
code. This brings us to the second rule of compiler errors:
Second Rule of Compiler Errors-

A compiler error may be caused by any source code line above the line referred
to by the compiler; however, it can not be caused by a line below.
In C (and C++), do not forget that the #include preprocessor statement inserts the

code of a header file into the source file. An error in the header file, may cause a
compiler error referencing a line in the main source file.

Most systems allow the preprocessed code (that the C compiler actually
compiles!) to be stored in a file. This allows you to see exactly what is being
compiled. This file will also show how each C macro was expanded. This can
be very helpful to discover the cause of normally very hard to find errors.
A useful technique for finding the cause of puzzling compiler errors is to delete (or
comment out) preceding sections of code until the error disappears. When the error
disappears, the last section removed must have caused the error.

The compiler can also display warnings. A warning is not a syntax error;
however, it may be a logical error in the program. It marks a statement in your
program that is legal, but is suspicious.

You should treat warnings as errors unless you understand why the warning
was generated. Often compilers can be set to different warning levels. It is to your
advantage to set this level as high as possible, to have the compiler give as many
warnings as possible. Look at these warnings very carefully!.
Brain Wash Drill-

Remember that just because a program compiles with no errors or warnings
does not mean that the program is correct! It only means that every line of the
program is syntactically correct. That is, the compiler understands what each
statement says to do. The program may still have many logical errors! An English
paper may be grammatically correct (i.e., have nouns, verbs, etc. in the correct
places), but be gibberish.
2.2 Linker Errors-
The linker is a program that links object files (which contain the compiled machine
code from a single source file) and libraries (which are files that are collections of
object files) together to create an executable program.
The linker matches up functions and global variables used in object files to their

definitions in other object files. The linker uses the name (often the term symbol is
used) of the function or global variable to perform the match.
The most common type of linker error is an unresolved symbol or name. This error
occurs when a function or global variable is used, but the linker cannot find a match
for the name. For example, on an IBM AIX system, the error message looks like this:
0706-317 ERROR: Unresolved or undefined symbols detected:

Symbols in error (followed by references) are dumped to the load map.
The -bloadmap:<filename> option will create a load map..fun
This message means that a function (or global variable) named fun (ignore the
period) was referenced in the program, but never defined. There are two common
causes of these errors:

Misspelling the name of the function-

In the example, above there was a function named func. This is not a compiler error.
Code in one source file can use functions defined in another. The compiler assumes
that any function referenced, but not defined in the file that references it, will be
defined in another file and linked.

It is only at the link stage that this assumption can be checked. (Note that
C++ compilers will usually generate compiler errors for this, since C++ requires
prototypes for all referenced functions!)

The correct libraries or object files where not linked

The linker must know what libraries and object files are needed to form the
executable program. The standard C libraries are automatically linked. UNIX
systems, like the AIX system, do not automatically link in the standard C math
library! To link in the math library on the AIX system, use the -lm flag on the compile
command. For example, to compile a C program that uses sqrt,type:cc prog.c –lm

Remember that the #include statement only inserts text into source files. It is a

common myth that it also links in the appropriate library! The linker never sees this
statement!

There are also bugs related to the linker. One difficult bug to uncover occurs when
there are two definitions of a function or global variable. The linker will pick the
first definition it finds and ignores the other. Some linkers will display a warning
message when this occurs (The AIX linker does not!)

Another bug related to linking occurs when a function is called with the wrong
arguments. The linker only looks at the name of the function when matching. It does
no argument checking. Here's an example:

File: x.c
 int f(int x, int y)
 {
 return x + y;
 }
File: y.c
 int main()
 {
 int s = f(3);
 return 0;
 }

These types of bugs can be prevented by using prototypes. For example, if the
prototype: int f(int, int);

Is added to y.c the compiler will catch this error. Actually, the best idea is
to put the prototype in a header file and include it in both x.c and y.c. Why use a
header file?

So that there is only one instance of the prototype that all files use. If a
separate instance is typed into each source file, there is no guarantee that each
instance is the same.

If there is only one instance, it can not be inconsistent with itself! Why
include it in x.c (the file the function is defined in)? So that the compiler can check
the prototype and ensure that it is consistent with the function's definition.
(Additional note: C++ uses a technique called name mangling to catch these type of
errors.)
3. Runtime Errors-

A runtime error occurs when the program is running and usually results in the
program aborting. On a UNIX/Linux system, an aborting program creates
a coredump.

A coredump is a binary file named core that contains information about the state
of program when it aborted. Debuggers like gdb and dbx can read this file and tell
you useful information about what the program was doing when it aborted. There are
several types of runtime errors:
Illegal memory access-

This is probably the most common type of error. Under UNIX/Linux, the program
will coredump with the messageSegmentation fault(coredump).

Using Win95 or NT, programs will also abort. However, traditional DOS does not
check for illegal memory accesses; the program continues running, but the results are
unpredictable.

The DOS Borland/Turbo C/C++ compilers will check for data written to
the NULL address. However, the error message
NULL pointer assignment is not displayed until the program terminates.
Division by zero All operating systems detect this error and abort the program.
4. Debugging Tools-

Many methods of debugging a program compare the program's behavior with the
correct behavior in great detail. Usually the normal output of the program does not
show the detail needed. Debugging tools allow you to examine the behavior of the in
more detail.
4.1 The assert Macro-

The assert macro is a quick and easy way to put debugging tests into a
C/C++ program. To use this macro, you must include the assert.h header file near
the top of your source file. Using assert is simple. The format is:

assert(boolean (or int) expression);
If the boolean expression evaluates to true (i.e., not zero), the assert does nothing.
However, if it evaluates to false (zero), assert prints an error message and aborts the
program. As an example, consider the following assert:

assert(x != 0);
If x is zero, the following will be displayed:
Assertion failed: x != 0, file err.c, line 6

Abnormal program termination
And the program will abort. Notice that the actual assertion, the name of the file

and the line number in the file are displayed.
The assert macro is very useful for putting sanity checks into programs. These are

conditions that should always be true if the program is working correctly. It should
not be used for user error checking (such as when the file a user requested to read
does not exist). Normal if statements should be used for these runtime errors.

Of course, in a commercial program, an assertion failure is not particular helpful

to an end user. Also, checking assertions will make the program run at least a little
slower than without them. Fortunately, it is easy to disable theassert macro without
even removing it.

If the macro NDEBUG is defined (above the statement that includesassert.h!),
the assert macro does absolutely nothing. If the assertions need to be enabled later,
just remove the line that defines NDEBUG.

(If this technique is used, be sure that the assert statements do not execute code
needed for the program to run correctly. If NDEBUG is defined, the code
would not be run!)
4.2 Print Statements-

This time honored method of debugging involves inserting debugging print
statements liberally in your program. The print statements should be designed to
show both what code the program is executing and what values critical variables
have.
4.3 Debuggers-
The previous method of debugging by adding print statements has two
disadvantages:

1. When new print statements are added, program must be recompiled.

2. Information output is fixed and cannot be changed as program is running.
Source-level debuggers provide a much easier way to trace the execution of
programs. They allow one to:

1. Look at the value of any variable as the program is running.

2. Pause execution when program reaches any desired statement. (This
position in the program is called a breakpoint).

3. Single step statement by statement through a program.

I strongly recommend that you learn to use the debugger for whatever system you
program on. Debuggers can savelots of time when debugging your program!
4.4 Lint -

The lint program checks C programs for a common list of bugs. It scans your
C source code and prints out a list of possible problems. Be warned
that lint is very picky! For example, the line:

printf("Hello, World ");
Will produce a warning message because printf returns an integer value that

is not stored. The return value ofprintf is often ignored, but lint still produces an
warning. There are several ways to make lint happy with this statement, one is:

(void) printf("Hello, World ");
This says to ignore the return value.

4.5 Walk through -
A walk through is a process of hand checking the logic of a program. The

programmer sits down with someone else (best if another programmer, but
anybody will do) and walks through the program for an
-example case. Often it is the programmer himself who finds the bug in the
process of explaining how the program is supposed to work and carefully looking
at his code.

However, it is easy for the programmer to "know" what the program should
be doing and remain blind to what the program is actually doing.

Students need to be very careful using this approach with other students.
Two students in the same class should not walk through a program together.

5. General Tips -
Here are some general tips for debugging programs.

5.1 Finding Bugs
Before bugs are removed they must be discovered!

Aggressively test programs!
Start with small problems that can be easily checked by hand. (You should
already have one of these worked out from the planning stage!)
Test every feature of the program at least once! And is once really enough? Test
features in different ways if possible.
Do not forget to test trivial problems.
Do not make invalid assumptions about input data.

5.2 Determining the Causes of Bugs -
A bug can only be caused by the code in the program that has already

executed. Be sure you do not waste time searching through code that has not run
yet. A debugger or print statements can be used to determine which code has
executed and which has not.

Do not fix bugs by mindlessly changing code until it seems to work. You
need to figure out why one statement does work and another does not. You should

http://www.drpaulcarter.com/cs/debug.php#thinking

have a good reason for every line of code. "It doesn't work without this line" is
not a good reason!

CHAPTER
∞ 22- Part –II ∞

(Common C Programming Errors)
Introduction-
Bug -
 A software bug is an error, flaw, failure, or fault in a computer program or
system that causes it to produce an incorrect or unexpected result, or to behave in
unintended ways. Most bugs arise from mistakes and errors made by people in either
a program's source code or its design, or in frameworks and operating systems used
by such programs, and a few are caused by compilers producing incorrect code.

A program that contains a large number of bugs, and/or bugs that seriously
interfere with its functionality, is said to be buggy. Reports detailing bugs in a
program are commonly known as bug reports, defect reports, fault reports, problem
reports, trouble reports, change requests, and so forth.

How bugs get into software-

 In software development projects, a "mistake" or "fault" can be introduced
at any stage during development. Bugs are a consequence of the nature of human
factors in the programming task. They arise from oversights or mutual
misunderstandings made by a software team during specification, design, coding,

data entry and documentation.

For example,

In creating a relatively simple program to sort a list of words into
alphabetical order, one's design might fail to consider what should happen when a
word contains a hyphen. Perhaps, when converting the abstract design into the chosen
programming language,

Prevention-

The software industry has put much effort into finding methods for
preventing programmers from inadvertently introducing bugs while writing software.
These include:

Programming style-

 While typos in the program code are often caught by the compiler, a bug
usually appears when the programmer makes a logic error. Various innovations in
programming style and defensive programming are designed to make these bugs less
likely, or easier to spot.

In some programming languages, so-called typos, especially of symbols or
logical/mathematical operators, actually represent logic errors, since the mistyped
constructs are accepted by the compiler with a meaning other than that which the
programmer intended.

Programming techniques-

 Bugs often create inconsistencies in the internal data of a running program.
Programs can be written to check the consistency of their own internal data while
running. If an inconsistency is encountered, the program can immediately halt, so that
the bug can be located and fixed. Alternatively, the program can simply inform the
user, attempt to correct the inconsistency, and continue running.

Development methodologies-

 There are several schemes for managing programmer activity, so that fewer
bugs are produced. Many of these fall under the discipline of software engineering
(which addresses software design issues as well). For example, formal program

specifications are used to state the exact behavior of programs, so that design bugs
can be eliminated.

Unfortunately, formal specifications are impractical or impossible[citation
needed] for anything but the shortest programs, because of problems of combinatorial
explosion and indeterminacy.

 In modern times, popular approaches include automated unit testing and
automated acceptance testing (sometimes going to the extreme of test-driven
development), and agile software development (which is often combined with, or
even in some cases mandates, automated testing).

All of these approaches are supposed to catch bugs and poorly-specified
requirements soon after they are introduced, which should make them easier and
cheaper to fix, and to catch at least some of them before they enter into production
use.

Programming language support-

 Programming languages often include features which help programmers
prevent bugs, such as static type systems, restricted namespaces and modular
programming, among others. For example, when a programmer writes (pseudocode)
LET REAL_VALUE PI = "THREE AND A BIT", although this may be syntactically
correct, the code fails a type check. Depending on the language and implementation,
this may be caught by the compiler or at run-time.

 In addition, many recently invented languages have deliberately excluded
features which can easily lead to bugs, at the expense of making code slower than it
need be: the general principle being that, because of Moore's law, computers get
faster and software engineers get slower; it is almost always better to write simpler,
slower code than "clever", inscrutable code, especially considering that maintenance
cost is considerable. For example, the Java programming language does not support
pointer arithmetic; implementations of some languages such as Pascal and scripting
languages often have runtime bounds checking of arrays, at least in a debugging build.

Code analysis-

 Tools for code analysis help developers by inspecting the program text
beyond the compiler's capabilities to spot potential problems. Although in general
the problem of finding all programming errors given a specification is not solvable
(see halting problem), these tools exploit the fact that human programmers tend to

make the same kinds of mistakes when writing software.

Instrumentation-

 Tools to monitor the performance of the software as it is running, either
specifically to find problems such as bottlenecks or to give assurance as to correct
working, may be embedded in the code explicitly (perhaps as simple as a statement
saying PRINT "I AM HERE"), or provided as tools. It is often a surprise to find
where most of the time is taken by a piece of code, and this removal of assumptions
might cause the code to be rewritten.

Debugging-

 Debugging is a methodical process of finding and reducing the number of bugs,
or defects, (Errors) in a computer program, thus making it behave as expected. Finding
and fixing bugs, or "debugging", has always been a major part of computer
programming.

Maurice Wilkes, an early computing pioneer, described his realization in the
late 1940s that much of the rest of his life would be spent finding mistakes in his own
programs. As computer programs grow more complex, bugs become more common and
difficult to fix.

Often programmers spend more time and effort finding and fixing bugs than

writing new code. Software testers are professionals whose primary task is to find
bugs, or write code to support testing. On some projects, more resources can be spent
on testing than in developing the program.

Usually, the most difficult part of debugging is finding the bug in the source
code. Once it is found, correcting it is usually relatively easy. Programs known as
debuggers exist to help programmers locate bugs by executing code line by line,
watching variable values, and other features to observe program behavior.

Without a debugger, code can be added so that messages or values can be

written to a console (for example with printf in the C programming language) or to a
window or log file to trace program execution or show values.

However, even with the aid of a debugger, locating bugs is something of an art.
It is not uncommon for a bug in one section of a program to cause failures in a
completely different section,[citation needed] thus making it especially difficult to track
(for example, an error in a graphics rendering routine causing a file I/O routine to fail),

in an apparently unrelated part of the system.
Introduction-

This Chapter lists the common C programming errors that the author sees time and
time again. Solutions to the errors are also presented.

2. Beginner Errors-
These are errors that beginning C students often make. However, the professionals
still sometimes make them too!

2.1 Forgetting to put a break in a switch statement.
Remember that C does not break out of a switch statement if a case is encountered.
For example:

int x = 2;
switch(x) {
case 2:
 printf("Two\n");
case 3:
 printf("Three\n");
}
Output:
Two
Three
Put a break to break out of the switch:
int x = 2;
switch(x) {
case 2:
 printf("Two\n");
 break;
case 3:
 printf("Three\n");
 break; /* not necessary, but good if additional cases are added later */
}

2.2 Using = instead of ==
C's = operator is used exclusively for assignment and returns the value

assigned. The == operator is used exclusively for comparison and returns an
integer value (0 for false, not 0 for true). Because of these return values, the C
compiler often does not flag an error when = is used when one really wanted
an ==.

For example:
 int x = 5;
 if (x = 6)
 printf("x equals 6\n");
This code prints out x equals 6! Why? The assignment inside the if sets x to 6 and

returns the value 6 to the if. Since 6 is not 0, this is interpreted as true.
One way to have the compiler find this type of error is to put any constants (or any

r-value expressions) on the left side. Then if an = is used, it will be an error:

if (6 = x)

2.3 scanf() errors -
There are two types of common scanf() errors:

2.3.1 Forgetting to put an ampersand (&) on arguments -
scanf() must have the address of the variable to store input into. This means that

often the ampersand address operator is required to compute the addresses.
Here's an example:

int x;
char * st = malloc(31);

scanf("%d", &x); /* & required to pass address to scanf() */
scanf("%30s", st); /* NO & here, st itself points to variable! */

As the last line above shows, sometimes no ampersand is correct!
2.3.2 Using the wrong format for operand -

C compilers do not check that the correct format is used for arguments of
a scanf() call. The most common errors are using the %f format for doubles
(which must use the %lf format) and mixing up %c and %s for characters and
strings.

2.4 Size of arrays
Arrays in C always start at index 0. This means that an array of 10 integers
defined as:

int a[10];

Has valid indices from 0 to 9 not 10! It is very common for students go one
too far in an array. This can lead to unpredictable behavior of the program.

2.5 Integer division
Unlike Pascal, C uses the / operator for both real and integer division. It is important
to understand how C determines which it will do. If both operands are of an integal
type, integer division is used, else real division is used. For example:

double half = 1/2;

This code sets half to 0 not 0.5! Why? Because 1 and 2 are integer constants. To fix
this, change at least one of them to a real constant.

double half = 1.0/2;

If both operands are integer variables and real division is desired, cast one of the
variables to double (or float).

int x = 5, y = 2;
double d = ((double) x)/y;

2.6 Loop errors –

In C, a loop repeats the very next statement after the loop statement. The code:
 int x = 5;
 while(x > 0);
 x--;

Is an infinite loop. Why? The semicolon after the while defines the statement to

repeat as the null statement (which does nothing). Remove the semicolon and the
loop works as expected.

Another common loop error is to iterate one too many times or one too few. Check
loop conditions carefully!
2.7 Not using prototypes -

Prototypes tell the compiler important features of a function: the return type and
the parameters of the function. If no prototype is given, the compiler assumes that the
function returns an int and can take any number of parameters of any type.

One important reason to use prototypes is to let the compiler check for errors in
the argument lists of function calls. However, a prototype must be used if the function
does not return an int. For example, the sqrt() function returns a double, not an int.

The following code:

double x = sqrt(2);

will not work correctly if a prototype:

double sqrt(double);

Does not appear above it. Why? Without a prototype, the C compiler
assumes that sqrt() returns an int. Since the returned value is stored in a double
variable, the compiler inserts code to convert the value to a double. This conversion
is not needed and will result in the wrong value.

The solution to this problem is to include the correct C header file that contains
the sqrt() prototype, math.h. For functions you write, you must either place the
prototype at the top of the source file or create a header file and include it.
2.8 Not initializing pointers-

Anytime you use a pointer, you should be able to answer the question: What
variable does this point to? If you cannot answer this question, it is likely it doesn't
point to any variable.

This type of error will often result in a Segmentation fault/coredump error
on UNIX/Linux or a general protection fault under Windows. (Under good old DOS
(ugh!), anything could happen!)
Here's an example of this type of error.

#include <string.h>
int main()
{
 char * st; /* defines a pointer to a char or char array */
 strcpy(st, "abc"); /* what char array does st point to?? */
 return 0;
}

How to do this correctly? Either use an array or dynamically allocate an array.
#include <string.h>
int main()
{
 char st[20]; /* defines an char array */

 strcpy(st, "abc"); /* st points to char array */
 return 0;
}

Or

#include <string.h>
#include <stdlib.h>
int main()
{
 char *st = malloc(20); /* st points to allocated array*/
 strcpy(st, "abc"); /* st points to char array */
 free(st); /* don't forget to deallocate when
done! */
 return 0;
}

Actually, the first solution is much preferred for what this code does. Why?
Dynamical allocation should only be used when it is required. It is slower and more
error prone than just defining a normal array.
3. String Errors -

3.1 Confusing character and string constants-

C considers character and string constants as very different things.
Character constants are enclosed in single quotes and string constants are
enclosed in double quotes. String constants act as a pointer to the actually string.
Consider the following code:

char ch = 'A'; /* correct */
char ch = "A"; /* error */

The second line assigns the character variable ch to the address of a string
constant. This should generate a compiler error. The same should happen if a
string pointer is assigned to a character constant:

const char * st = "A"; /* correct */
const char * st = 'A'; /* error */

3.2 Comparing strings with ==
3.3

Never use the == operator to compare the value of strings! Strings are char arrays.
The name of a char array acts like a pointer to the string (just like other types of

arrays in C). So what? Consider the --

following code:
 char st1[] = "abc";
 char st2[] = "abc";
 if (st1 == st2)
 printf("Yes");
 else
 printf("No");

This code prints out No. Why? Because the == operator is comparing
the pointer values of st1 and st2, not the data pointed to by them. The correct way
to compare string values is to use the strcmp() library function. (Be sure to
include string.h) If the if statement above is replaced with the following:
if (strcmp(st1,st2) == 0)
 printf("Yes");
else
 printf("No");
The code will print out Yes. For similar reasons, don't use the other relational
operators (<,>, etc.) with strings either. Use strcmp() here too.

3.3 Not null terminating strings -
C assumes that a string is a character array with a terminating null character.

This null character has ASCII value 0 and can be represented as just 0 or '\0'.
This value is used to mark the end of meaningful data in the string. If this

value is missing, many C string functions will keep processing data past the end of
the meaningful data and often past the

-end of the character array itself until it happens to find a zero byte in memory!
Most C library string functions that create strings will always properly null

terminate them. Some do not (e.g.,strncpy()). Be sure to read their descriptions
carefully.
3.4 Not leaving room for the null terminator-
A C string must have a null terminator at the end of the meaningful data in the string.
A common mistake is to not allocate room for this extra character. For example, the
string defined below- char str[30];
Only has room for only 29 (not 30) actually data characters, since a null must appear
after the last data character.
This can also be a problem with dynamic allocation. Below is the correct way to
allocate a string to the exact size needed to hold a copy of another.

char * copy_str = malloc(strlen(orig_str) + 1);
strcpy(copy_str, orig_str);
The common mistake is to forget to add one to the return value of strlen().

The strlen() function returns a count of the data characters which does not include the
null terminator.

This type of error can be very hard to detect. It might not cause any problems or
only problems in extreme cases. In the case of dynamic allocation, it might corrupt
the heap (the area of the program's memory used for dynamic allocation) and cause
the next heap operation (malloc(), free(), etc.) to fail.

4. Input/Output Errors

4.1 Using fgetc(), etc. incorrectly

The fgetc(), getc() and getchar() functions all return back an integer value.
For example, the prototype of fgetc()is:

int fgetc(FILE *);

Sometimes this integer value is really a simple character, but there is one

very important case where the return value is not a character!

What is this value? EOF A common misconception of students is that

files have a special EOF character at the end. There is no special character stored
at the end of a file. EOF is an integer error code returned by a function. Here is
thewrong way to use fgetc():

int count_line_size(FILE * fp)
{
 char ch;
 int cnt = 0;

 while((ch = fgetc(fp)) != EOF && ch != '\n')
 cnt++;
 return cnt;
}

What is wrong with this? The problem occurs in the condition of the while loop. To
illustrate, here is the loop rewritten to show what C will do behind the scenes.

while((int) (ch = (char) fgetc(fp)) != EOF && ch != '\n')

 cnt++;
The return value of fgetc(fp) is cast to char to store the result into ch. Then the

value of ch must be cast back to anint to compare it with EOF. So what?
Casting an int value to a char and then back to an int may not give back the

original int value. This means in the example above that if fgetc() returns back
the EOF value, the casting may change the value so that the comparison later
with EOF would be false.
What is the solution? Make the ch variable an int as below:

 int count_line_size(FILE * fp)
 {
 int ch;
 int cnt = 0;
 while((ch = fgetc(fp)) != EOF && ch != '\n')
 cnt++;
 return cnt;
 }

Now the only hidden cast is in the second comparison.
while((ch = fgetc(fp)) != EOF && ch != ((int) '\n'))
 cnt++;

This cast has no harmful effects at all! So, the moral of all this is: always use
an int variable to store the result of the fgetc(), getc() and getchar().
4.2 Using feof() incorrectly-
There is a wide spread misunderstanding of how C's feof() function works. Many
programmers use it like Pascal'seof() function. However, C's function works
differently!
What's the difference? Pascal's function returns true if the next read will fail because
of end of file. C's function returns true if the last function failed. Here's an example
of a misuse of feof():

#include <stdio.h>
int main()
{
 FILE * fp = fopen("test.txt", "r");
 char line[100];
 while(! feof(fp)) {
 fgets(line, sizeof(line), fp);
 fputs(line, stdout);
 }

 fclose(fp);
 return 0;
}

This program will print out the last line of the input file twice. Why? After the last
line is read in and printed out,feof() will still return 0 (false) and the loop will
continue. The next fgets() fails and so the line variable holding the contents of the last
line is not changed and is printed out again. After this, feof() will return true
(since fgets()failed) and the loop ends.

How should this fixed? One way is the following:
#include <stdio.h>
int main()
{
 FILE * fp = fopen("test.txt", "r");
 char line[100];
while(1)
{
 fgets(line, sizeof(line), fp);
 if (feof(fp)) /* check for EOF right after fgets() */
break;
 fputs(line, stdout);
}
 fclose(fp);
 return 0;
}

However, this is not the best way. There is really no reason to use feof() at all. C
input functions return values that can be used to check for EOF. For
example, fgets returns the NULL pointer on EOF.

Here's a better version of the program:

#include <stdio.h>
int main()
{
 FILE * fp = fopen("test.txt", "r");
 char line[100];

 while(fgets(line, sizeof(line), fp) != NULL)
 fputs(line, stdout);

 fclose(fp);
 return 0;
}

The author has yet to see any student use the feof() function correctly! Incidentally,
this discussion also applies to C++ and Java. The eof() method of an istream works
just like C's feof().
4.3 Leaving characters in the input buffer -

C input (and output) functions buffer data. Buffering stores data in memory and
only reads (or writes) the data from (or to) I/O devices when needed. Reading and
writing data in big chunks is much more efficient than a byte (or character) at a time.
Often the buffering has no effect on programming.

One place where buffering is visible is input using scanf(). The keyboard is
usually line buffered. This means that each line input is stored in a buffer. Problems
can arise when a program does not process all the data in a line, before it wants to
process the next line of input. For example, consider the following code:

 int x;
 char st[31];
 printf("Enter an integer: ");
 scanf("%d", &x);
 printf("Enter a line of text: ");
 fgets(st, 31, stdin);
The fgets() will not read the line of text that is typed in. Instead, it will probably

just read an empty line. In fact, the program will not even wait for an input for
the fgets() call. Why? The scanf() call reads the characters needed that represent the
integer number read in, but it leaves the '\n' in the input buffer. The fgets() then starts
reading data from the input buffer. It finds a '\n' and stops without needing any
additional keyboard input.

What's the solution? One simple method is to read and dump all the characters
from the input buffer until a '\n' after the scanf() call. Since this is something that
might be used in lots of places, it makes sense to make this a function. Here is a
function that does just this:

/* function dump_line
* This function reads and dumps any remaining characters on the current input
* line of a file.
* Parameter:
* fp - pointer to a FILE to read characters from
* Precondition:
* fp points to a open file

* Postcondition:
* the file referenced by fp is positioned at the end of the next line
* or the end of the file.
*/

void dump_line(FILE * fp)
{
 int ch;

 while((ch = fgetc(fp)) != EOF && ch != '\n')
 /* null body */;
}

Here is the code above fixed by using the above function:

int x;
char st[31];
printf("Enter an integer: ");
scanf("%d", &x);
dump_line(stdin);
printf("Enter a line of text: ");
fgets(st, 31, stdin);
One incorrect solution is to use the following:
fflush(stdin);

This will compile but its behavior is undefined by the ANSI C standard.
The fflush() function is only meant to be used on streams open for output, not input.
This method does seem to work with some C compilers, but is completely
unportable! Thus, it should not be used.
4.4 Using the gets() function-

Do not use this function! It does not know how many characters can be safely
stored in the string passed to it. Thus, if too many are read, memory will be
corrupted.

Many security bugs that have been exploited on the Internet use this fact! Use
the fgets() function instead (and read from stdin). But remember that
unlike gets(), fgets() does notdiscard a terminating \n from the input.

The scanf() functions can also be used dangerously. The %s format can overwrite
the destination string. However, it can be used safely by specifying a width. For

example, the format %20s will not read more than 20 characters.

CHAPTER
∞ 23- Part –II ∞

(Live Software Development Using C)

Mind Drill Note-

If you find any error in any code, then don’t upset try to de-bug
(Fix them) Use every pulse of your mind, if I lead you to 99% then
atleast you can Try remaining 1%.

 Auhtor Vs. Student

160. Wap for print e-mail Addresses found in any text document.

#include <stdio.h>
#include <ctype.h>
#include <string.h>

int main(void) {
char line[1024];
char address[256];
char *ptr1 = NULL;
char *ptr2 = NULL;

while((fgets(line, 1024, stdin)) != NULL) {
if(strchr(line, '@') != NULL && strchr(line, '.') != NULL)
{
 for(ptr1 = line, ptr2 = address; *ptr1; ptr1++) {
 if(isalpha(*ptr1) || isdigit(*ptr1) ||
 strchr(".-_@", *ptr1) != NULL)
 *ptr2++ = *ptr1;
 else

{
 *ptr2 = '\0';

if(strlen(address) >= 6 && strchr(address, '@') != NULL &&
 strchr(address, '.') != NULL)
printf("%s\n", address);

 ptr2 = address;
 } /* else */
 } /* for */
 } /* if */
} /* while */

return 0;
}
161. Wap Program to solve a 3 Variable Linear Equation.

#include<stdio.h>
#include<conio.h>
#include<stdlib.h>
main()
{
clrscr();
float a,b,c,d,l,m,n,k,p,D,q,r,s,x,y,z;
printf("PROGRAM TO SOLVE THREE VARIABLE LINEAR SIMULTANEOUSE QUATIONS");
printf("The equations are of theform:
ax+by+cz+d=0
lx+my+nz+k=0
px+qy+rz+s=0");
printf("Enter the coefficients in the order a,b,c,d,l,m,n,k,p,q,r,s");
scanf("%f%f%f%f%f%f%f%f%f%f%f%f",&a,&b,&c,&d,&l,&m,&n,&k,&p,&q,&r,&s);
printf("The equations you have input are:");
printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0",a,b,c,d);
printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0",l,m,n,k);
printf(" %.2f*x + %.2f*y + %.2f*z + %.2f = 0",p,q,r,s);
D = (a*m*r+b*p*n+c*l*q)-(a*n*q+b*l*r+c*m*p);
x = ((b*r*k+c*m*s+d*n*q)-(b*n*s+c*q*k+d*m*r))/D;
y = ((a*n*s+c*p*k+d*l*r)-(a*r*k+c*l*s+d*n*p))/D;
z = ((a*q*k+b*l*s+d*m*p)-(a*m*s+b*p*k+d*l*q))/D;

printf("The solutions to the above three equations are :");
printf(" x = %5.2f
 y = %5.2f
 z = %5.2f
",x,y,z);
getch();
return 0;
}
162. wap to Develop a Analog or Digital Clock In “C”.

#include<graphics.h>
#include<conio.h>
#include<math.h>
#include<dos.h>
void main()
{
int gd=DETECT,gm;
int x=320,y=240,r=200,i,h,m,s,thetamin,thetasec;
struct time t;
char n[12][3]={"3","2","1","12","11","10","9","8","7","6","5","4"};
initgraph(&gd,&gm,"f:\arun\tc");\put the directory which contains
egavga.bgi
circle(x,y,210);
setcolor(4);
settextstyle(4,0,5);
for(i=0;i<12;i++)
{
if(i!=3)
outtextxy(x+(r-14)*cos(M_PI/6*i)-10,y-(r-14)*sin(M_PI/6*i)-26,n[i]);
else
outtextxy(x+(r-14)*cos(M_PI/6*i)-20,y-(r-14)*sin(M_PI/6*i)-26,n[i]);
}
gettime(&t);
printf("The current time is: %2d:%02d:%02d.%02d
",t.ti_hour, t.ti_min,
t.ti_sec, t.ti_hund);
while(!kbhit())
{

setcolor(5);
setfillstyle(1,5);
circle(x,y,10);
floodfill(x,y,5);
gettime(&t);
if(t.ti_min!=m)
{
setcolor(0);
line(x,y,x+(r-60)*cos(thetamin*(M_PI/180)),y-(r-60)*sin(thetamin*(M_PI/180)));
circle(x+(r-80)*cos(thetamin*(M_PI/180)),y-(r-80)*sin(thetamin*(M_PI/180)),10);

line(x,y,x+(r-110)*cos(M_PI/6*h-((m/2)*(M_PI/180))),y-(r-110)*sin(M_PI/6*h
-((m/2)*(M_PI/180))));
circle(x+(r-130)*cos(M_PI/6*h-((m/2)*(M_PI/180))),y-(r-130)*sin(M_PI/6*h-((m/2)*
(M_PI/180))),10);
}
if(t.ti_hour>12)
t.ti_hour=t.ti_hour-12;
if(t.ti_hour<4)
h=abs(t.ti_hour-3);
else
h=15-t.ti_hour;
m=t.ti_min;
if(t.ti_min<=15)
thetamin=(15-t.ti_min)*6;
else
thetamin=450-t.ti_min*6;
if(t.ti_sec<=15)
thetasec=(15-t.ti_sec)*6;
else
thetasec=450-t.ti_sec*6;
setcolor(4);
line(x,y,x+(r-110)*cos(M_PI/6*h-((m/2)*(M_PI/180))),y-(r-110)*sin(M_PI/6*h
-((m/2)*(M_PI/180))));
circle(x+(r-130)*cos(M_PI/6*h-((m/2)*(M_PI/180))),y-(r-130)*sin(M_PI/6*h-((m/2)*
(M_PI/180))),10);

line(x,y,x+(r-60)*cos(thetamin*(M_PI/180)),y-(r-60)*sin(thetamin*(M_PI/180)));
circle(x+(r-80)*cos(thetamin*(M_PI/180)),y-(r-80)*sin(thetamin*(M_PI/180)) ,10);

setcolor(15);
line(x,y,x+(r-70)*cos(thetasec*(M_PI/180)),y-(r-70)*sin(thetasec*(M_PI/180)));
delay(1000);
setcolor(0);
line(x,y,x+(r-70)*cos(thetasec*(M_PI/180)),y-(r-70)*sin(thetasec*(M_PI/180)));
}
}
 163. Wap to Print ip addresses found in text“C”.
#include <stdio.h>
#include <regex.h>
#include <locale.h>
#include <string.h>
#include <stdlib.h>
#include <sys/types.h>
#define IPEXPR "([0-9]{1,3})\\.([0-9]{1,3})\\.([0-9]{1,3})\\.([0-9]{1,3})"
int main(void)
{
char line[1024];
char *address = NULL;
char delim[] = ",:;`/\"+-_(){}[]<>*&^%$#@!?~/|\\= \t\r\n";
int retval = 0;
regex_t re;
setlocale(LC_ALL, "");

if(regcomp(&re, IPEXPR, REG_EXTENDED) != 0)
 return 1;

while((fgets(line, 1024, stdin)) != NULL)
{

if(strchr(line, '.') == NULL)
 continue;

 address = strtok(line, delim);
 while(address != NULL)
{
 if(strlen(address) <= 15)

if((retval = regexec(&re, address, 0, NULL, 0)) == 0)

printf("%s\n", address);
address = strtok(NULL, delim);

 } /* while */
} /* while */
return 0;
}
164. Wap to Print Progress bar “C”.
#include<graphics.h>
#include<conio.h>
#include<alloc.h>
#include<dos.h>
void main()
{
int gd=DETECT,gm;
initgraph(&gd,&gm,"c:\tc ");
//put your directory where egavga.bgi is
void *buffer;
unsigned int size;
setbkcolor(BLUE);
line(230,330,370,330);
line(230,350,370,350);
line(226,335,226,345);
line(226,335,230,330);
line(226,345,230,350);
line(374,335,374,345);
line(374,335,370,330);
line(374,345,370,350);
outtextxy(275,365,"Loading"); //put you text here
int x=232,y=336,x1=236,y1=344;
for(int i=1;i<5;i++)
{
setfillstyle(1,RED);
bar(x,y,x1,y1);
x=x1+2;
x1=x1+6;
}
size=imagesize(232,336,256,344);
buffer=malloc(size);
getimage(232,336,256,344,buffer);

x=232;
int m=0;
while(!kbhit())
{
putimage(x,336,buffer,XOR_PUT);
x=x+2;
if(x>=350)
{
m++;
x=232;
if(m==5) // m is no of times bar moves
return;
}
putimage(x,336,buffer,XOR_PUT);
delay(20); // delay(time) is the speed of moving
bar // less delay means fast and vice versa
}
getch();
}
165. Develop a Database software for company in C.
#include <stdio.h>
typedef struct Employee
{
 char fname[20];
 char lname[20];
 char sub_taken[20];
 char last_edu[20];
 char join_date[20];
 int id;
 int age;
 float bsal;
}Employee;

int main(void)
{
 int id;
 FILE *fp,*ft;
 char another,choice;
 Employee emp;
 char fname[20];

 char lname[20];
 long int recsize;

 fp=fopen("EMP.DAT","rb+");
 if(fp==NULL)
 {
 fp=fopen("EMP.DAT","wb+");
 if(fp==NULL)
 {
 printf("
Can't Open File");
 exit();
 }
 }
 recsize=sizeof(emp);
 while(1)
 {
 printf("
1.Add Records
2.Delete Records
3.Modify Records
4.List Records
5.Exit");
printf("Enter your choice");
 fflush(stdin);
 scanf("%c",&choice);
 switch(choice)
 {
 case'1':
 fseek(fp,0,SEEK_END);
 another='Y';
 while(another=='Y'|| another=='y')
 {
printf("Enter the first name,last name,age and basic salary : ");
scanf("%s %d %f",emp.fname,&emp.age,&emp.bsal);
printf(" Enter joining date,id,last education,subject taken");
scanf("%s %d %s %s",emp.join_date,&emp.id,emp.last_edu,emp.sub_taken);
 fwrite(&emp,recsize,1,fp);
 printf(" Add another Record (Y/N): ");

 fflush(stdin);
 another=getchar();
 }
 break;
 case '2':
 another='Y';
 while(another=='Y'|| another=='y')
 {
printf("Enter the id of the employee to be deleted : ");
scanf("%d",&id);
 ft=fopen("TEMP.DAT","wb");
 rewind(fp);
 while(fread(&emp,recsize,1,fp)==1)
 {
 if(strcmp(emp.id,id)!=0)
 fwrite(&emp,recsize,1,ft);
 }
 fclose(fp);
 fclose(ft);
 remove("EMP.DAT");
 rename("TEMP.DAT","EMP.DAT");
 fp=fopen("EMP.DAT","rb+");
 printf("Delete another Record(Y/N): ");
 fflush(stdin);
 another=getchar();
 }
 break;
 case '3':
 another='Y';
 while(another=='Y'|| another=='y')
 {
printf("Enter name of employee to modify : ");
scanf("%s",emp.fname);
 rewind(fp);
 while(fread(&emp,recsize,1,fp)==1)
 {
 if(strcmp(emp.id,id)==0)
 {
printf("Enter new fname,new lname,age,basic salary,joining_date,subject taken and last
education : ");

scanf("%s%s%d%f%s%s%s",emp.fname,emp.lname,&emp.age,&emp.bsal,emp.join_date,emp.sub_taken,emp.last_edu);

fseek(fp,-recsize,SEEK_CUR);
fwrite(&emp,recsize,1,fp);
 break;
 }
 }
printf("Want to Modify another record(Y/N): ");
 fflush(stdin);
 another=getchar();
 }
 break;
 case '4':
 rewind(fp);
 while(fread(&emp,recsize,1,fp)==1)
printf("%s %s %d %g",emp.fname,emp.lname,emp.age,emp.bsal,emp.
join_date,emp.last_edu,emp.sub_taken);
 break;

 case '5':
 fclose(fp);
 exit();

 } } }
166. C Program To Accept Password.

This is a simple login program in C. While accepting password it masks each character
using ‘*’ symbol and display the password in the next line after the user hits Enter key.
It also accepts backspaces and acts accordingly.

#include<stdio.h>
#include<conio.h>
char pw[25],ch;
int i;
void main()
{
clrscr();
puts(“Enter password”);
while(1)
{

if(i<0)
i=0;
ch=getch();
if(ch==13)
break; /*13 is ASCII value of ENTER*/
if(ch==8) /*ASCII value of BACKSPACE*/
{
putch(‘\b’);
putch(NULL);
putch(‘\b’);
–i;
continue;
}
pw[i++]=ch;
ch=’*';
putch(ch);
}
pw[i]=’\0′;
printf(“\n\n%s”,pw);
getch();
}

Mind Drill Note –

For every “C” Graphics Programming, Make sure that you have

installed Graphics Driver according to your motherboard. Unless it you can’t
run any program that cointains Graphics Programming.

167. Develop A Program to Block USB.

#include<stdio.h>
#include<conio.h>
#include<windows.h> optinal ok!
#include<dos.h> optinal ok !

void main()
{

system("reg add
HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\USBSTOR \/v
Start \/t REG_DWORD \/d 4 \/f");
getch();
}
168. Develop A Program to UnBlock USB.

#include<stdio.h>
#include<conio.h>
#include<windows.h> �optinal
#include<dos.h> �optinal
void main()
{
system("reg add
HKEY_LOCAL_MACHINE\\SYSTEM\\CurrentControlSet\\Services\\USBSTOR \/v
Start \/t REG_DWORD \/d 3 \/f");
getch();
}

Don’t forget to write a review || comment. Tell your friends about this ultimate book.
Digital Version (PDF-IPAD)of this book is also available on Google Play || Google
Books. Paperback Available on Amazon.com || Createspace store || Flipkart.com

After this book – Planning to learn C++?, If yes, then try “C++ Professional”
Authored by Harry H Chaudhary. Paperback Available on Amazon.com
with $13 USD, Digital 5.99 USD on Google books or Google Play. You
can search books by Author Name also on amazon store.

